Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssnct | Structured version Visualization version GIF version |
Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssnct.1 | ⊢ (𝜑 → ¬ 𝐴 ≼ ω) |
ssnct.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssnct | ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnct.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssct 8839 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
4 | ssnct.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ≼ ω) | |
5 | 4 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → ¬ 𝐴 ≼ ω) |
6 | 3, 5 | pm2.65da 814 | 1 ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3887 class class class wbr 5074 ωcom 7712 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-dom 8735 |
This theorem is referenced by: iocnct 43078 iccnct 43079 |
Copyright terms: Public domain | W3C validator |