| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssnct | Structured version Visualization version GIF version | ||
| Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ssnct.1 | ⊢ (𝜑 → ¬ 𝐴 ≼ ω) |
| ssnct.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssnct | ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssnct.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssct 8971 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
| 4 | ssnct.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ≼ ω) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → ¬ 𝐴 ≼ ω) |
| 6 | 3, 5 | pm2.65da 816 | 1 ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3897 class class class wbr 5089 ωcom 7796 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-dom 8871 |
| This theorem is referenced by: iocnct 45650 iccnct 45651 |
| Copyright terms: Public domain | W3C validator |