![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssnct | Structured version Visualization version GIF version |
Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
ssnct.1 | ⊢ (𝜑 → ¬ 𝐴 ≼ ω) |
ssnct.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssnct | ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnct.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssct 9119 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
4 | ssnct.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ≼ ω) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → ¬ 𝐴 ≼ ω) |
6 | 3, 5 | pm2.65da 816 | 1 ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3976 class class class wbr 5166 ωcom 7905 ≼ cdom 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-dom 9007 |
This theorem is referenced by: iocnct 45460 iccnct 45461 |
Copyright terms: Public domain | W3C validator |