Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnct Structured version   Visualization version   GIF version

Theorem ssnct 45065
Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
ssnct.1 (𝜑 → ¬ 𝐴 ≼ ω)
ssnct.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssnct (𝜑 → ¬ 𝐵 ≼ ω)

Proof of Theorem ssnct
StepHypRef Expression
1 ssnct.2 . . 3 (𝜑𝐴𝐵)
2 ssct 8975 . . 3 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
31, 2sylan 580 . 2 ((𝜑𝐵 ≼ ω) → 𝐴 ≼ ω)
4 ssnct.1 . . 3 (𝜑 → ¬ 𝐴 ≼ ω)
54adantr 480 . 2 ((𝜑𝐵 ≼ ω) → ¬ 𝐴 ≼ ω)
63, 5pm2.65da 816 1 (𝜑 → ¬ 𝐵 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wss 3903   class class class wbr 5092  ωcom 7799  cdom 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-dom 8874
This theorem is referenced by:  iocnct  45531  iccnct  45532
  Copyright terms: Public domain W3C validator