| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssnct | Structured version Visualization version GIF version | ||
| Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| ssnct.1 | ⊢ (𝜑 → ¬ 𝐴 ≼ ω) |
| ssnct.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssnct | ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssnct.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssct 9028 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
| 4 | ssnct.1 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ≼ ω) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≼ ω) → ¬ 𝐴 ≼ ω) |
| 6 | 3, 5 | pm2.65da 816 | 1 ⊢ (𝜑 → ¬ 𝐵 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3922 class class class wbr 5115 ωcom 7850 ≼ cdom 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-dom 8924 |
| This theorem is referenced by: iocnct 45511 iccnct 45512 |
| Copyright terms: Public domain | W3C validator |