MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfisg Structured version   Visualization version   GIF version

Theorem symgfisg 19405
Description: The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgfisg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgfisg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}))
2 eqidd 2731 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2731 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4046 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 3998 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺))
8 difeq1 4085 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5872 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109eleq1d 2814 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((0g𝐺) ∖ I ) ∈ Fin))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 19337 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18904 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 19338 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4091 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5872 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 5975 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4332 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 230 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5871 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5887 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2753 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0fi 9016 . . . . 5 ∅ ∈ Fin
2624, 25eqeltri 2825 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ∈ Fin
2718, 26eqeltrrdi 2838 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ∈ Fin)
2810, 15, 27elrabd 3664 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
29 biid 261 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4085 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5872 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231eleq1d 2814 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑦 ∖ I ) ∈ Fin))
3332elrab 3662 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin))
34 difeq1 4085 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5872 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635eleq1d 2814 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑧 ∖ I ) ∈ Fin))
3736elrab 3662 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin))
38 difeq1 4085 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5872 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039eleq1d 2814 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin))
41123ad2ant1 1133 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝐺 ∈ Grp)
42 simp2l 1200 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑦𝐵)
43 simp3l 1202 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑧𝐵)
44 eqid 2730 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18880 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1373 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 19321 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 584 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4091 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5872 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 simp2r 1201 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
52 simp3r 1203 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑧 ∖ I ) ∈ Fin)
53 unfi 9141 . . . . . . 7 ((dom (𝑦 ∖ I ) ∈ Fin ∧ dom (𝑧 ∖ I ) ∈ Fin) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
5451, 52, 53syl2anc 584 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
55 mvdco 19382 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
56 ssfi 9143 . . . . . 6 (((dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin ∧ dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5754, 55, 56sylancl 586 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5850, 57eqeltrd 2829 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin)
5940, 46, 58elrabd 3664 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6029, 33, 37, 59syl3anb 1161 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
61 difeq1 4085 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6261dmeqd 5872 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6362eleq1d 2814 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin))
64 simprl 770 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦𝐵)
65 eqid 2730 . . . . . 6 (invg𝐺) = (invg𝐺)
665, 65grpinvcl 18926 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6712, 64, 66syl2an2r 685 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6811, 5, 65symginv 19339 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6968ad2antrl 728 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) = 𝑦)
7069difeq1d 4091 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
7170dmeqd 5872 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7211, 5symgbasf1o 19312 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7372ad2antrl 728 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦:𝐷1-1-onto𝐷)
74 f1omvdcnv 19381 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7573, 74syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7671, 75eqtrd 2765 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
77 simprr 772 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
7876, 77eqeltrd 2829 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin)
7963, 67, 78elrabd 3664 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
8033, 79sylan2b 594 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
811, 2, 3, 7, 28, 60, 80, 12issubgrpd2 19081 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  cdif 3914  cun 3915  wss 3917  c0 4299   I cid 5535  ccnv 5640  dom cdm 5641  cres 5643  ccom 5645  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059  SymGrpcsymg 19306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-symg 19307
This theorem is referenced by:  symggen  19407  psgndmsubg  19439
  Copyright terms: Public domain W3C validator