MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfisg Structured version   Visualization version   GIF version

Theorem symgfisg 18590
Description: The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgfisg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgfisg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}))
2 eqidd 2822 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2822 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4055 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 4002 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺))
8 difeq1 4091 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5768 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109eleq1d 2897 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((0g𝐺) ∖ I ) ∈ Fin))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 18522 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2821 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18125 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 18523 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4097 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5768 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 5872 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4322 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 232 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5767 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5784 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2844 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0fin 8740 . . . . 5 ∅ ∈ Fin
2624, 25eqeltri 2909 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ∈ Fin
2718, 26eqeltrrdi 2922 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ∈ Fin)
2810, 15, 27elrabd 3681 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
29 biid 263 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4091 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5768 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231eleq1d 2897 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑦 ∖ I ) ∈ Fin))
3332elrab 3679 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin))
34 difeq1 4091 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5768 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635eleq1d 2897 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑧 ∖ I ) ∈ Fin))
3736elrab 3679 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin))
38 difeq1 4091 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5768 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039eleq1d 2897 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin))
41123ad2ant1 1129 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝐺 ∈ Grp)
42 simp2l 1195 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑦𝐵)
43 simp3l 1197 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑧𝐵)
44 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18105 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1367 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 18506 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 586 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4097 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5768 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 simp2r 1196 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
52 simp3r 1198 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑧 ∖ I ) ∈ Fin)
53 unfi 8779 . . . . . . 7 ((dom (𝑦 ∖ I ) ∈ Fin ∧ dom (𝑧 ∖ I ) ∈ Fin) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
5451, 52, 53syl2anc 586 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
55 mvdco 18567 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
56 ssfi 8732 . . . . . 6 (((dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin ∧ dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5754, 55, 56sylancl 588 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5850, 57eqeltrd 2913 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin)
5940, 46, 58elrabd 3681 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6029, 33, 37, 59syl3anb 1157 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
61 difeq1 4091 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6261dmeqd 5768 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6362eleq1d 2897 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin))
64 simprl 769 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦𝐵)
65 eqid 2821 . . . . . 6 (invg𝐺) = (invg𝐺)
665, 65grpinvcl 18145 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6712, 64, 66syl2an2r 683 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6811, 5, 65symginv 18524 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6968ad2antrl 726 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) = 𝑦)
7069difeq1d 4097 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
7170dmeqd 5768 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7211, 5symgbasf1o 18497 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7372ad2antrl 726 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦:𝐷1-1-onto𝐷)
74 f1omvdcnv 18566 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7573, 74syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7671, 75eqtrd 2856 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
77 simprr 771 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
7876, 77eqeltrd 2913 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin)
7963, 67, 78elrabd 3681 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
8033, 79sylan2b 595 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
811, 2, 3, 7, 28, 60, 80, 12issubgrpd2 18289 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  cdif 3932  cun 3933  wss 3935  c0 4290   I cid 5453  ccnv 5548  dom cdm 5549  cres 5551  ccom 5553  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Fincfn 8503  Basecbs 16477  s cress 16478  +gcplusg 16559  0gc0g 16707  Grpcgrp 18097  invgcminusg 18098  SubGrpcsubg 18267  SymGrpcsymg 18489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-tset 16578  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-subg 18270  df-symg 18490
This theorem is referenced by:  symggen  18592  psgndmsubg  18624
  Copyright terms: Public domain W3C validator