MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfisg Structured version   Visualization version   GIF version

Theorem symgfisg 19375
Description: The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgfisg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgfisg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}))
2 eqidd 2732 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2732 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4025 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 3978 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺))
8 difeq1 4064 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5840 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109eleq1d 2816 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((0g𝐺) ∖ I ) ∈ Fin))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 19307 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2731 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18873 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 19308 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4070 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5840 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 5945 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4311 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 230 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5839 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5855 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2754 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0fi 8959 . . . . 5 ∅ ∈ Fin
2624, 25eqeltri 2827 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ∈ Fin
2718, 26eqeltrrdi 2840 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ∈ Fin)
2810, 15, 27elrabd 3644 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
29 biid 261 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4064 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5840 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231eleq1d 2816 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑦 ∖ I ) ∈ Fin))
3332elrab 3642 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin))
34 difeq1 4064 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5840 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635eleq1d 2816 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑧 ∖ I ) ∈ Fin))
3736elrab 3642 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin))
38 difeq1 4064 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5840 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039eleq1d 2816 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin))
41123ad2ant1 1133 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝐺 ∈ Grp)
42 simp2l 1200 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑦𝐵)
43 simp3l 1202 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑧𝐵)
44 eqid 2731 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18849 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1373 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 19291 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 584 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4070 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5840 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 simp2r 1201 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
52 simp3r 1203 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑧 ∖ I ) ∈ Fin)
53 unfi 9075 . . . . . . 7 ((dom (𝑦 ∖ I ) ∈ Fin ∧ dom (𝑧 ∖ I ) ∈ Fin) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
5451, 52, 53syl2anc 584 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
55 mvdco 19352 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
56 ssfi 9077 . . . . . 6 (((dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin ∧ dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5754, 55, 56sylancl 586 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5850, 57eqeltrd 2831 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin)
5940, 46, 58elrabd 3644 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6029, 33, 37, 59syl3anb 1161 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
61 difeq1 4064 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6261dmeqd 5840 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6362eleq1d 2816 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin))
64 simprl 770 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦𝐵)
65 eqid 2731 . . . . . 6 (invg𝐺) = (invg𝐺)
665, 65grpinvcl 18895 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6712, 64, 66syl2an2r 685 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6811, 5, 65symginv 19309 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6968ad2antrl 728 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) = 𝑦)
7069difeq1d 4070 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
7170dmeqd 5840 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7211, 5symgbasf1o 19282 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7372ad2antrl 728 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦:𝐷1-1-onto𝐷)
74 f1omvdcnv 19351 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7573, 74syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7671, 75eqtrd 2766 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
77 simprr 772 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
7876, 77eqeltrd 2831 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin)
7963, 67, 78elrabd 3644 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
8033, 79sylan2b 594 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
811, 2, 3, 7, 28, 60, 80, 12issubgrpd2 19050 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cdif 3894  cun 3895  wss 3897  c0 4278   I cid 5505  ccnv 5610  dom cdm 5611  cres 5613  ccom 5615  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  Fincfn 8864  Basecbs 17115  s cress 17136  +gcplusg 17156  0gc0g 17338  Grpcgrp 18841  invgcminusg 18842  SubGrpcsubg 19028  SymGrpcsymg 19276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-tset 17175  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-subg 19031  df-symg 19277
This theorem is referenced by:  symggen  19377  psgndmsubg  19409
  Copyright terms: Public domain W3C validator