MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfisg Structured version   Visualization version   GIF version

Theorem symgfisg 18594
Description: The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgfisg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgfisg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2825 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}))
2 eqidd 2825 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2825 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4042 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 3989 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺))
8 difeq1 4078 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5762 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109eleq1d 2900 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((0g𝐺) ∖ I ) ∈ Fin))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 18526 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2824 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18129 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 18527 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4084 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5762 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 5866 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4306 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 233 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5761 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5778 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2847 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0fin 8739 . . . . 5 ∅ ∈ Fin
2624, 25eqeltri 2912 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ∈ Fin
2718, 26eqeltrrdi 2925 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ∈ Fin)
2810, 15, 27elrabd 3668 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
29 biid 264 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4078 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5762 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231eleq1d 2900 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑦 ∖ I ) ∈ Fin))
3332elrab 3666 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin))
34 difeq1 4078 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5762 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635eleq1d 2900 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑧 ∖ I ) ∈ Fin))
3736elrab 3666 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin))
38 difeq1 4078 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5762 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039eleq1d 2900 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin))
41123ad2ant1 1130 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝐺 ∈ Grp)
42 simp2l 1196 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑦𝐵)
43 simp3l 1198 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑧𝐵)
44 eqid 2824 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18109 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1368 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 18510 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 587 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4084 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5762 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 simp2r 1197 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
52 simp3r 1199 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑧 ∖ I ) ∈ Fin)
53 unfi 8778 . . . . . . 7 ((dom (𝑦 ∖ I ) ∈ Fin ∧ dom (𝑧 ∖ I ) ∈ Fin) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
5451, 52, 53syl2anc 587 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
55 mvdco 18571 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
56 ssfi 8731 . . . . . 6 (((dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin ∧ dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5754, 55, 56sylancl 589 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5850, 57eqeltrd 2916 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin)
5940, 46, 58elrabd 3668 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6029, 33, 37, 59syl3anb 1158 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
61 difeq1 4078 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6261dmeqd 5762 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6362eleq1d 2900 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin))
64 simprl 770 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦𝐵)
65 eqid 2824 . . . . . 6 (invg𝐺) = (invg𝐺)
665, 65grpinvcl 18149 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6712, 64, 66syl2an2r 684 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6811, 5, 65symginv 18528 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6968ad2antrl 727 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) = 𝑦)
7069difeq1d 4084 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
7170dmeqd 5762 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7211, 5symgbasf1o 18501 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7372ad2antrl 727 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦:𝐷1-1-onto𝐷)
74 f1omvdcnv 18570 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7573, 74syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7671, 75eqtrd 2859 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
77 simprr 772 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
7876, 77eqeltrd 2916 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin)
7963, 67, 78elrabd 3668 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
8033, 79sylan2b 596 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
811, 2, 3, 7, 28, 60, 80, 12issubgrpd2 18293 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  {crab 3137  cdif 3916  cun 3917  wss 3919  c0 4276   I cid 5447  ccnv 5542  dom cdm 5543  cres 5545  ccom 5547  1-1-ontowf1o 6343  cfv 6344  (class class class)co 7146  Fincfn 8501  Basecbs 16481  s cress 16482  +gcplusg 16563  0gc0g 16711  Grpcgrp 18101  invgcminusg 18102  SubGrpcsubg 18271  SymGrpcsymg 18493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-tset 16582  df-0g 16713  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-efmnd 18032  df-grp 18104  df-minusg 18105  df-subg 18274  df-symg 18494
This theorem is referenced by:  symggen  18596  psgndmsubg  18628
  Copyright terms: Public domain W3C validator