MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfisg Structured version   Visualization version   GIF version

Theorem symgfisg 19385
Description: The symmetric group has a subgroup of permutations that move finitely many points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgfisg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgfisg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2727 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}))
2 eqidd 2727 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2727 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4072 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 4013 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ⊆ (Base‘𝐺))
8 difeq1 4110 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5898 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109eleq1d 2812 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((0g𝐺) ∖ I ) ∈ Fin))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 19317 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2726 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18892 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 19318 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4116 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5898 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 5999 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4358 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 229 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5897 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5913 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2754 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0fin 9170 . . . . 5 ∅ ∈ Fin
2624, 25eqeltri 2823 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ∈ Fin
2718, 26eqeltrrdi 2836 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ∈ Fin)
2810, 15, 27elrabd 3680 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
29 biid 261 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4110 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5898 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231eleq1d 2812 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑦 ∖ I ) ∈ Fin))
3332elrab 3678 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin))
34 difeq1 4110 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5898 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635eleq1d 2812 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (𝑧 ∖ I ) ∈ Fin))
3736elrab 3678 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin))
38 difeq1 4110 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5898 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039eleq1d 2812 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin))
41123ad2ant1 1130 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝐺 ∈ Grp)
42 simp2l 1196 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑦𝐵)
43 simp3l 1198 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → 𝑧𝐵)
44 eqid 2726 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18868 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1368 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 19300 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 583 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4116 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5898 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 simp2r 1197 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
52 simp3r 1199 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom (𝑧 ∖ I ) ∈ Fin)
53 unfi 9171 . . . . . . 7 ((dom (𝑦 ∖ I ) ∈ Fin ∧ dom (𝑧 ∖ I ) ∈ Fin) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
5451, 52, 53syl2anc 583 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin)
55 mvdco 19362 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
56 ssfi 9172 . . . . . 6 (((dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ∈ Fin ∧ dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5754, 55, 56sylancl 585 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦𝑧) ∖ I ) ∈ Fin)
5850, 57eqeltrd 2827 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ∈ Fin)
5940, 46, 58elrabd 3680 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ∈ Fin)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6029, 33, 37, 59syl3anb 1158 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
61 difeq1 4110 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6261dmeqd 5898 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6362eleq1d 2812 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ∈ Fin ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin))
64 simprl 768 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦𝐵)
65 eqid 2726 . . . . . 6 (invg𝐺) = (invg𝐺)
665, 65grpinvcl 18914 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6712, 64, 66syl2an2r 682 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6811, 5, 65symginv 19319 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6968ad2antrl 725 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) = 𝑦)
7069difeq1d 4116 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
7170dmeqd 5898 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7211, 5symgbasf1o 19291 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7372ad2antrl 725 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → 𝑦:𝐷1-1-onto𝐷)
74 f1omvdcnv 19361 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7573, 74syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7671, 75eqtrd 2766 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
77 simprr 770 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (𝑦 ∖ I ) ∈ Fin)
7876, 77eqeltrd 2827 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → dom (((invg𝐺)‘𝑦) ∖ I ) ∈ Fin)
7963, 67, 78elrabd 3680 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ∈ Fin)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
8033, 79sylan2b 593 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
811, 2, 3, 7, 28, 60, 80, 12issubgrpd2 19066 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  {crab 3426  cdif 3940  cun 3941  wss 3943  c0 4317   I cid 5566  ccnv 5668  dom cdm 5669  cres 5671  ccom 5673  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7404  Fincfn 8938  Basecbs 17150  s cress 17179  +gcplusg 17203  0gc0g 17391  Grpcgrp 18860  invgcminusg 18861  SubGrpcsubg 19044  SymGrpcsymg 19283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-tset 17222  df-0g 17393  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-submnd 18711  df-efmnd 18791  df-grp 18863  df-minusg 18864  df-subg 19047  df-symg 19284
This theorem is referenced by:  symggen  19387  psgndmsubg  19419
  Copyright terms: Public domain W3C validator