| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infempty | Structured version Visualization version GIF version | ||
| Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| Ref | Expression |
|---|---|
| infempty | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9401 | . 2 ⊢ inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, ◡𝑅) | |
| 2 | cnvso 6264 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
| 3 | brcnvg 5846 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) | |
| 4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) |
| 5 | 4 | bicomd 223 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 ↔ 𝑦◡𝑅𝑋)) |
| 6 | 5 | notbid 318 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑋)) |
| 7 | 6 | ralbidva 3155 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
| 8 | 7 | pm5.32i 574 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
| 9 | brcnvg 5846 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
| 10 | 9 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
| 11 | 10 | bicomd 223 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑦◡𝑅𝑥)) |
| 12 | 11 | notbid 318 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑥)) |
| 13 | 12 | ralbidva 3155 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥)) |
| 14 | 13 | reubiia 3363 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
| 15 | sup0 9425 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) → sup(∅, 𝐴, ◡𝑅) = 𝑋) | |
| 16 | 2, 8, 14, 15 | syl3anb 1161 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, ◡𝑅) = 𝑋) |
| 17 | 1, 16 | eqtrid 2777 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃!wreu 3354 ∅c0 4299 class class class wbr 5110 Or wor 5548 ◡ccnv 5640 supcsup 9398 infcinf 9399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-po 5549 df-so 5550 df-cnv 5649 df-iota 6467 df-riota 7347 df-sup 9400 df-inf 9401 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |