MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infempty Structured version   Visualization version   GIF version

Theorem infempty 9196
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
infempty ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem infempty
StepHypRef Expression
1 df-inf 9132 . 2 inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, 𝑅)
2 cnvso 6180 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 brcnvg 5777 . . . . . . . 8 ((𝑦𝐴𝑋𝐴) → (𝑦𝑅𝑋𝑋𝑅𝑦))
43ancoms 458 . . . . . . 7 ((𝑋𝐴𝑦𝐴) → (𝑦𝑅𝑋𝑋𝑅𝑦))
54bicomd 222 . . . . . 6 ((𝑋𝐴𝑦𝐴) → (𝑋𝑅𝑦𝑦𝑅𝑋))
65notbid 317 . . . . 5 ((𝑋𝐴𝑦𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦𝑅𝑋))
76ralbidva 3119 . . . 4 (𝑋𝐴 → (∀𝑦𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
87pm5.32i 574 . . 3 ((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
9 brcnvg 5777 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑥𝑅𝑦))
109ancoms 458 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑥𝑅𝑦))
1110bicomd 222 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
1211notbid 317 . . . . 5 ((𝑥𝐴𝑦𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
1312ralbidva 3119 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
1413reubiia 3316 . . 3 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
15 sup0 9155 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
162, 8, 14, 15syl3anb 1159 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, 𝑅) = 𝑋)
171, 16eqtrid 2790 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ∃!wreu 3065  c0 4253   class class class wbr 5070   Or wor 5493  ccnv 5579  supcsup 9129  infcinf 9130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-cnv 5588  df-iota 6376  df-riota 7212  df-sup 9131  df-inf 9132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator