![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infempty | Structured version Visualization version GIF version |
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infempty | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9466 | . 2 ⊢ inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, ◡𝑅) | |
2 | cnvso 6292 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | brcnvg 5881 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) | |
4 | 3 | ancoms 457 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) |
5 | 4 | bicomd 222 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 ↔ 𝑦◡𝑅𝑋)) |
6 | 5 | notbid 317 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑋)) |
7 | 6 | ralbidva 3166 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
8 | 7 | pm5.32i 573 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
9 | brcnvg 5881 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
10 | 9 | ancoms 457 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
11 | 10 | bicomd 222 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑦◡𝑅𝑥)) |
12 | 11 | notbid 317 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑥)) |
13 | 12 | ralbidva 3166 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥)) |
14 | 13 | reubiia 3371 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
15 | sup0 9489 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) → sup(∅, 𝐴, ◡𝑅) = 𝑋) | |
16 | 2, 8, 14, 15 | syl3anb 1158 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, ◡𝑅) = 𝑋) |
17 | 1, 16 | eqtrid 2777 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∃!wreu 3362 ∅c0 4323 class class class wbr 5148 Or wor 5588 ◡ccnv 5676 supcsup 9463 infcinf 9464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-po 5589 df-so 5590 df-cnv 5685 df-iota 6499 df-riota 7373 df-sup 9465 df-inf 9466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |