MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infempty Structured version   Visualization version   GIF version

Theorem infempty 9504
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
infempty ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem infempty
StepHypRef Expression
1 df-inf 9440 . 2 inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, 𝑅)
2 cnvso 6286 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
3 brcnvg 5878 . . . . . . . 8 ((𝑦𝐴𝑋𝐴) → (𝑦𝑅𝑋𝑋𝑅𝑦))
43ancoms 457 . . . . . . 7 ((𝑋𝐴𝑦𝐴) → (𝑦𝑅𝑋𝑋𝑅𝑦))
54bicomd 222 . . . . . 6 ((𝑋𝐴𝑦𝐴) → (𝑋𝑅𝑦𝑦𝑅𝑋))
65notbid 317 . . . . 5 ((𝑋𝐴𝑦𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦𝑅𝑋))
76ralbidva 3173 . . . 4 (𝑋𝐴 → (∀𝑦𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
87pm5.32i 573 . . 3 ((𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋))
9 brcnvg 5878 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑥𝑅𝑦))
109ancoms 457 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑥𝑅𝑦))
1110bicomd 222 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
1211notbid 317 . . . . 5 ((𝑥𝐴𝑦𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
1312ralbidva 3173 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦𝑅𝑥))
1413reubiia 3381 . . 3 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
15 sup0 9463 . . 3 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋)
162, 8, 14, 15syl3anb 1159 . 2 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, 𝑅) = 𝑋)
171, 16eqtrid 2782 1 ((𝑅 Or 𝐴 ∧ (𝑋𝐴 ∧ ∀𝑦𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  ∃!wreu 3372  c0 4321   class class class wbr 5147   Or wor 5586  ccnv 5674  supcsup 9437  infcinf 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-po 5587  df-so 5588  df-cnv 5683  df-iota 6494  df-riota 7367  df-sup 9439  df-inf 9440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator