Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infempty | Structured version Visualization version GIF version |
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infempty | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9202 | . 2 ⊢ inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, ◡𝑅) | |
2 | cnvso 6191 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | brcnvg 5788 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) | |
4 | 3 | ancoms 459 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) |
5 | 4 | bicomd 222 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 ↔ 𝑦◡𝑅𝑋)) |
6 | 5 | notbid 318 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑋)) |
7 | 6 | ralbidva 3111 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
8 | 7 | pm5.32i 575 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
9 | brcnvg 5788 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
10 | 9 | ancoms 459 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
11 | 10 | bicomd 222 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑦◡𝑅𝑥)) |
12 | 11 | notbid 318 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑥)) |
13 | 12 | ralbidva 3111 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥)) |
14 | 13 | reubiia 3324 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
15 | sup0 9225 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) → sup(∅, 𝐴, ◡𝑅) = 𝑋) | |
16 | 2, 8, 14, 15 | syl3anb 1160 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, ◡𝑅) = 𝑋) |
17 | 1, 16 | eqtrid 2790 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 ∅c0 4256 class class class wbr 5074 Or wor 5502 ◡ccnv 5588 supcsup 9199 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-po 5503 df-so 5504 df-cnv 5597 df-iota 6391 df-riota 7232 df-sup 9201 df-inf 9202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |