![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infempty | Structured version Visualization version GIF version |
Description: The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infempty | ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9458 | . 2 ⊢ inf(∅, 𝐴, 𝑅) = sup(∅, 𝐴, ◡𝑅) | |
2 | cnvso 6286 | . . 3 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | brcnvg 5876 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) | |
4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑋 ↔ 𝑋𝑅𝑦)) |
5 | 4 | bicomd 222 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 ↔ 𝑦◡𝑅𝑋)) |
6 | 5 | notbid 318 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑋𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑋)) |
7 | 6 | ralbidva 3170 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
8 | 7 | pm5.32i 574 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋)) |
9 | brcnvg 5876 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
10 | 9 | ancoms 458 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
11 | 10 | bicomd 222 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑦◡𝑅𝑥)) |
12 | 11 | notbid 318 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦◡𝑅𝑥)) |
13 | 12 | ralbidva 3170 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥)) |
14 | 13 | reubiia 3378 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) |
15 | sup0 9481 | . . 3 ⊢ ((◡𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦◡𝑅𝑥) → sup(∅, 𝐴, ◡𝑅) = 𝑋) | |
16 | 2, 8, 14, 15 | syl3anb 1159 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → sup(∅, 𝐴, ◡𝑅) = 𝑋) |
17 | 1, 16 | eqtrid 2779 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃!wreu 3369 ∅c0 4318 class class class wbr 5142 Or wor 5583 ◡ccnv 5671 supcsup 9455 infcinf 9456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-po 5584 df-so 5585 df-cnv 5680 df-iota 6494 df-riota 7370 df-sup 9457 df-inf 9458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |