MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Visualization version   GIF version

Theorem iscnp2 22496
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1 𝑋 = 𝐽
iscn.2 𝑌 = 𝐾
Assertion
Ref Expression
iscnp2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp2
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4285 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ¬ ((𝐽 CnP 𝐾)‘𝑃) = ∅)
2 df-ov 7345 . . . . . . . . . 10 (𝐽 CnP 𝐾) = ( CnP ‘⟨𝐽, 𝐾⟩)
3 ndmfv 6865 . . . . . . . . . 10 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ( CnP ‘⟨𝐽, 𝐾⟩) = ∅)
42, 3eqtrid 2789 . . . . . . . . 9 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → (𝐽 CnP 𝐾) = ∅)
54fveq1d 6832 . . . . . . . 8 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ((𝐽 CnP 𝐾)‘𝑃) = (∅‘𝑃))
6 0fv 6874 . . . . . . . 8 (∅‘𝑃) = ∅
75, 6eqtrdi 2793 . . . . . . 7 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ((𝐽 CnP 𝐾)‘𝑃) = ∅)
81, 7nsyl2 141 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ⟨𝐽, 𝐾⟩ ∈ dom CnP )
9 df-cnp 22485 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
10 ovex 7375 . . . . . . . . . . 11 ( 𝑘m 𝑗) ∈ V
11 ssrab2 4029 . . . . . . . . . . 11 {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ⊆ ( 𝑘m 𝑗)
1210, 11elpwi2 5295 . . . . . . . . . 10 {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗)
1312rgenw 3066 . . . . . . . . 9 𝑥 𝑗{𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗)
14 eqid 2737 . . . . . . . . . 10 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1514fmpt 7045 . . . . . . . . 9 (∀𝑥 𝑗{𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗) ↔ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗))
1613, 15mpbi 229 . . . . . . . 8 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗)
17 vuniex 7659 . . . . . . . 8 𝑗 ∈ V
1810pwex 5328 . . . . . . . 8 𝒫 ( 𝑘m 𝑗) ∈ V
19 fex2 7853 . . . . . . . 8 (((𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗) ∧ 𝑗 ∈ V ∧ 𝒫 ( 𝑘m 𝑗) ∈ V) → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
2016, 17, 18, 19mp3an 1461 . . . . . . 7 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V
219, 20dmmpo 7984 . . . . . 6 dom CnP = (Top × Top)
228, 21eleqtrdi 2848 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ⟨𝐽, 𝐾⟩ ∈ (Top × Top))
23 opelxp 5661 . . . . 5 (⟨𝐽, 𝐾⟩ ∈ (Top × Top) ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
2422, 23sylib 217 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
2524simpld 496 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2624simprd 497 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
27 elfvdm 6867 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
28 iscn.1 . . . . . . . . 9 𝑋 = 𝐽
2928toptopon 22172 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
30 iscn.2 . . . . . . . . 9 𝑌 = 𝐾
3130toptopon 22172 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
32 cnpfval 22491 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3329, 31, 32syl2anb 599 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3424, 33syl 17 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3534dmeqd 5852 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → dom (𝐽 CnP 𝐾) = dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
36 ovex 7375 . . . . . . . 8 (𝑌m 𝑋) ∈ V
3736rabex 5281 . . . . . . 7 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V
3837rgenw 3066 . . . . . 6 𝑥𝑋 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V
39 dmmptg 6185 . . . . . 6 (∀𝑥𝑋 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V → dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = 𝑋)
4038, 39ax-mp 5 . . . . 5 dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = 𝑋
4135, 40eqtrdi 2793 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → dom (𝐽 CnP 𝐾) = 𝑋)
4227, 41eleqtrd 2840 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
4325, 26, 423jca 1128 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
44 biid 261 . . 3 (𝑃𝑋𝑃𝑋)
45 iscnp 22494 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
4629, 31, 44, 45syl3anb 1161 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
4743, 46biadanii 820 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  wrex 3071  {crab 3404  Vcvv 3442  wss 3902  c0 4274  𝒫 cpw 4552  cop 4584   cuni 4857  cmpt 5180   × cxp 5623  dom cdm 5625  cima 5628  wf 6480  cfv 6484  (class class class)co 7342  m cmap 8691  Topctop 22148  TopOnctopon 22165   CnP ccnp 22482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-1st 7904  df-2nd 7905  df-map 8693  df-top 22149  df-topon 22166  df-cnp 22485
This theorem is referenced by:  cnptop1  22499  cnptop2  22500  cnprcl  22502  cnpf  22504  cnpimaex  22513  cnpnei  22521  cnpco  22524  cnprest  22546  cnprest2  22547
  Copyright terms: Public domain W3C validator