MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Visualization version   GIF version

Theorem iscnp2 22390
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1 𝑋 = 𝐽
iscn.2 𝑌 = 𝐾
Assertion
Ref Expression
iscnp2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp2
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4267 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ¬ ((𝐽 CnP 𝐾)‘𝑃) = ∅)
2 df-ov 7278 . . . . . . . . . 10 (𝐽 CnP 𝐾) = ( CnP ‘⟨𝐽, 𝐾⟩)
3 ndmfv 6804 . . . . . . . . . 10 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ( CnP ‘⟨𝐽, 𝐾⟩) = ∅)
42, 3eqtrid 2790 . . . . . . . . 9 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → (𝐽 CnP 𝐾) = ∅)
54fveq1d 6776 . . . . . . . 8 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ((𝐽 CnP 𝐾)‘𝑃) = (∅‘𝑃))
6 0fv 6813 . . . . . . . 8 (∅‘𝑃) = ∅
75, 6eqtrdi 2794 . . . . . . 7 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ((𝐽 CnP 𝐾)‘𝑃) = ∅)
81, 7nsyl2 141 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ⟨𝐽, 𝐾⟩ ∈ dom CnP )
9 df-cnp 22379 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
10 ovex 7308 . . . . . . . . . . 11 ( 𝑘m 𝑗) ∈ V
11 ssrab2 4013 . . . . . . . . . . 11 {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ⊆ ( 𝑘m 𝑗)
1210, 11elpwi2 5270 . . . . . . . . . 10 {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗)
1312rgenw 3076 . . . . . . . . 9 𝑥 𝑗{𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗)
14 eqid 2738 . . . . . . . . . 10 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1514fmpt 6984 . . . . . . . . 9 (∀𝑥 𝑗{𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗) ↔ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗))
1613, 15mpbi 229 . . . . . . . 8 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗)
17 vuniex 7592 . . . . . . . 8 𝑗 ∈ V
1810pwex 5303 . . . . . . . 8 𝒫 ( 𝑘m 𝑗) ∈ V
19 fex2 7780 . . . . . . . 8 (((𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗) ∧ 𝑗 ∈ V ∧ 𝒫 ( 𝑘m 𝑗) ∈ V) → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
2016, 17, 18, 19mp3an 1460 . . . . . . 7 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V
219, 20dmmpo 7911 . . . . . 6 dom CnP = (Top × Top)
228, 21eleqtrdi 2849 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ⟨𝐽, 𝐾⟩ ∈ (Top × Top))
23 opelxp 5625 . . . . 5 (⟨𝐽, 𝐾⟩ ∈ (Top × Top) ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
2422, 23sylib 217 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
2524simpld 495 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2624simprd 496 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
27 elfvdm 6806 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
28 iscn.1 . . . . . . . . 9 𝑋 = 𝐽
2928toptopon 22066 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
30 iscn.2 . . . . . . . . 9 𝑌 = 𝐾
3130toptopon 22066 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
32 cnpfval 22385 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3329, 31, 32syl2anb 598 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3424, 33syl 17 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3534dmeqd 5814 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → dom (𝐽 CnP 𝐾) = dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
36 ovex 7308 . . . . . . . 8 (𝑌m 𝑋) ∈ V
3736rabex 5256 . . . . . . 7 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V
3837rgenw 3076 . . . . . 6 𝑥𝑋 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V
39 dmmptg 6145 . . . . . 6 (∀𝑥𝑋 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V → dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = 𝑋)
4038, 39ax-mp 5 . . . . 5 dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = 𝑋
4135, 40eqtrdi 2794 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → dom (𝐽 CnP 𝐾) = 𝑋)
4227, 41eleqtrd 2841 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
4325, 26, 423jca 1127 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
44 biid 260 . . 3 (𝑃𝑋𝑃𝑋)
45 iscnp 22388 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
4629, 31, 44, 45syl3anb 1160 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
4743, 46biadanii 819 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  dom cdm 5589  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Topctop 22042  TopOnctopon 22059   CnP ccnp 22376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-top 22043  df-topon 22060  df-cnp 22379
This theorem is referenced by:  cnptop1  22393  cnptop2  22394  cnprcl  22396  cnpf  22398  cnpimaex  22407  cnpnei  22415  cnpco  22418  cnprest  22440  cnprest2  22441
  Copyright terms: Public domain W3C validator