MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Visualization version   GIF version

Theorem iscnp2 21846
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1 𝑋 = 𝐽
iscn.2 𝑌 = 𝐾
Assertion
Ref Expression
iscnp2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑌,𝑦

Proof of Theorem iscnp2
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4298 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ¬ ((𝐽 CnP 𝐾)‘𝑃) = ∅)
2 df-ov 7158 . . . . . . . . . 10 (𝐽 CnP 𝐾) = ( CnP ‘⟨𝐽, 𝐾⟩)
3 ndmfv 6699 . . . . . . . . . 10 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ( CnP ‘⟨𝐽, 𝐾⟩) = ∅)
42, 3syl5eq 2868 . . . . . . . . 9 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → (𝐽 CnP 𝐾) = ∅)
54fveq1d 6671 . . . . . . . 8 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ((𝐽 CnP 𝐾)‘𝑃) = (∅‘𝑃))
6 0fv 6708 . . . . . . . 8 (∅‘𝑃) = ∅
75, 6syl6eq 2872 . . . . . . 7 (¬ ⟨𝐽, 𝐾⟩ ∈ dom CnP → ((𝐽 CnP 𝐾)‘𝑃) = ∅)
81, 7nsyl2 143 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ⟨𝐽, 𝐾⟩ ∈ dom CnP )
9 df-cnp 21835 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
10 ovex 7188 . . . . . . . . . . 11 ( 𝑘m 𝑗) ∈ V
11 ssrab2 4055 . . . . . . . . . . 11 {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ⊆ ( 𝑘m 𝑗)
1210, 11elpwi2 5248 . . . . . . . . . 10 {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗)
1312rgenw 3150 . . . . . . . . 9 𝑥 𝑗{𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗)
14 eqid 2821 . . . . . . . . . 10 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1514fmpt 6873 . . . . . . . . 9 (∀𝑥 𝑗{𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} ∈ 𝒫 ( 𝑘m 𝑗) ↔ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗))
1613, 15mpbi 232 . . . . . . . 8 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗)
17 vuniex 7464 . . . . . . . 8 𝑗 ∈ V
1810pwex 5280 . . . . . . . 8 𝒫 ( 𝑘m 𝑗) ∈ V
19 fex2 7637 . . . . . . . 8 (((𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}): 𝑗⟶𝒫 ( 𝑘m 𝑗) ∧ 𝑗 ∈ V ∧ 𝒫 ( 𝑘m 𝑗) ∈ V) → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
2016, 17, 18, 19mp3an 1457 . . . . . . 7 (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V
219, 20dmmpo 7768 . . . . . 6 dom CnP = (Top × Top)
228, 21eleqtrdi 2923 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ⟨𝐽, 𝐾⟩ ∈ (Top × Top))
23 opelxp 5590 . . . . 5 (⟨𝐽, 𝐾⟩ ∈ (Top × Top) ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
2422, 23sylib 220 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
2524simpld 497 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2624simprd 498 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
27 elfvdm 6701 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
28 iscn.1 . . . . . . . . 9 𝑋 = 𝐽
2928toptopon 21524 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
30 iscn.2 . . . . . . . . 9 𝑌 = 𝐾
3130toptopon 21524 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
32 cnpfval 21841 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3329, 31, 32syl2anb 599 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3424, 33syl 17 . . . . . 6 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
3534dmeqd 5773 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → dom (𝐽 CnP 𝐾) = dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
36 ovex 7188 . . . . . . . 8 (𝑌m 𝑋) ∈ V
3736rabex 5234 . . . . . . 7 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V
3837rgenw 3150 . . . . . 6 𝑥𝑋 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V
39 dmmptg 6095 . . . . . 6 (∀𝑥𝑋 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ V → dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = 𝑋)
4038, 39ax-mp 5 . . . . 5 dom (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = 𝑋
4135, 40syl6eq 2872 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → dom (𝐽 CnP 𝐾) = 𝑋)
4227, 41eleqtrd 2915 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
4325, 26, 423jca 1124 . 2 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋))
44 biid 263 . . 3 (𝑃𝑋𝑃𝑋)
45 iscnp 21844 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
4629, 31, 44, 45syl3anb 1157 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
4743, 46biadanii 820 1 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290  𝒫 cpw 4538  cop 4572   cuni 4837  cmpt 5145   × cxp 5552  dom cdm 5554  cima 5557  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405  Topctop 21500  TopOnctopon 21517   CnP ccnp 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407  df-top 21501  df-topon 21518  df-cnp 21835
This theorem is referenced by:  cnptop1  21849  cnptop2  21850  cnprcl  21852  cnpf  21854  cnpimaex  21863  cnpnei  21871  cnpco  21874  cnprest  21896  cnprest2  21897
  Copyright terms: Public domain W3C validator