MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknccat Structured version   Visualization version   GIF version

Theorem clwwlknccat 30083
Description: The concatenation of two words representing closed walks anchored at the same vertex represents a closed walk with a length which is the sum of the lengths of the two walks. The resulting walk is a "double loop", starting at the common vertex, coming back to the common vertex by the first walk, following the second walk and finally coming back to the common vertex again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknccat ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))

Proof of Theorem clwwlknccat
StepHypRef Expression
1 isclwwlkn 30047 . . 3 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ↔ (𝐴 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐴) = 𝑀))
2 isclwwlkn 30047 . . 3 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝐵 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐵) = 𝑁))
3 biid 261 . . 3 ((𝐴‘0) = (𝐵‘0) ↔ (𝐴‘0) = (𝐵‘0))
4 simpl 482 . . . 4 ((𝐴 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐴) = 𝑀) → 𝐴 ∈ (ClWWalks‘𝐺))
5 simpl 482 . . . 4 ((𝐵 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐵) = 𝑁) → 𝐵 ∈ (ClWWalks‘𝐺))
6 id 22 . . . 4 ((𝐴‘0) = (𝐵‘0) → (𝐴‘0) = (𝐵‘0))
7 clwwlkccat 30010 . . . 4 ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
84, 5, 6, 7syl3an 1160 . . 3 (((𝐴 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐴) = 𝑀) ∧ (𝐵 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝐵) = 𝑁) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
91, 2, 3, 8syl3anb 1161 . 2 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
10 eqid 2736 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknwrd 30054 . . . . 5 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺))
1210clwwlknwrd 30054 . . . . 5 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
13 ccatlen 14614 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1411, 12, 13syl2an 596 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
15 clwwlknlen 30052 . . . . 5 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀)
16 clwwlknlen 30052 . . . . 5 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝐵) = 𝑁)
1715, 16oveqan12d 7451 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) → ((♯‘𝐴) + (♯‘𝐵)) = (𝑀 + 𝑁))
1814, 17eqtrd 2776 . . 3 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺)) → (♯‘(𝐴 ++ 𝐵)) = (𝑀 + 𝑁))
19183adant3 1132 . 2 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (♯‘(𝐴 ++ 𝐵)) = (𝑀 + 𝑁))
20 isclwwlkn 30047 . 2 ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ↔ ((𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺) ∧ (♯‘(𝐴 ++ 𝐵)) = (𝑀 + 𝑁)))
219, 19, 20sylanbrc 583 1 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  0cc0 11156   + caddc 11159  chash 14370  Word cword 14553   ++ cconcat 14609  Vtxcvtx 29014  ClWWalkscclwwlk 30001   ClWWalksN cclwwlkn 30044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-clwwlk 30002  df-clwwlkn 30045
This theorem is referenced by:  clwwlknonccat  30116
  Copyright terms: Public domain W3C validator