MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgsssg Structured version   Visualization version   GIF version

Theorem symgsssg 18356
Description: The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgsssg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgsssg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2779 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}))
2 eqidd 2779 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2779 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 3946 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 3893 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺))
8 difeq1 3982 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5624 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109sseq1d 3888 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((0g𝐺) ∖ I ) ⊆ 𝑋))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 18289 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2778 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 17919 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 18290 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 3988 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5624 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 5723 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4209 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 222 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5623 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5637 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2802 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0ss 4236 . . . . 5 ∅ ⊆ 𝑋
2624, 25eqsstri 3891 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ⊆ 𝑋
2718, 26syl6eqssr 3912 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ⊆ 𝑋)
2810, 15, 27elrabd 3598 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
29 biid 253 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 3982 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5624 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231sseq1d 3888 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑦 ∖ I ) ⊆ 𝑋))
3332elrab 3595 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋))
34 difeq1 3982 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5624 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635sseq1d 3888 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑧 ∖ I ) ⊆ 𝑋))
3736elrab 3595 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋))
38 difeq1 3982 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5624 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039sseq1d 3888 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋))
41123ad2ant1 1113 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝐺 ∈ Grp)
42 simp2l 1179 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
43 simp3l 1181 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑧𝐵)
44 eqid 2778 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 17899 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1351 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 18279 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 576 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 3988 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5624 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 mvdco 18334 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
52 simp2r 1180 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
53 simp3r 1182 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑧 ∖ I ) ⊆ 𝑋)
5452, 53unssd 4050 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ⊆ 𝑋)
5551, 54syl5ss 3869 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦𝑧) ∖ I ) ⊆ 𝑋)
5650, 55eqsstrd 3895 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋)
5740, 46, 56elrabd 3598 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
5829, 33, 37, 57syl3anb 1141 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
59 difeq1 3982 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6059dmeqd 5624 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6160sseq1d 3888 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋))
62 simprl 758 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
63 eqid 2778 . . . . . 6 (invg𝐺) = (invg𝐺)
645, 63grpinvcl 17938 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6512, 62, 64syl2an2r 672 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6611, 5, 63symginv 18291 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6766ad2antrl 715 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) = 𝑦)
6867difeq1d 3988 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
6968dmeqd 5624 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7011, 5symgbasf1o 18272 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7170ad2antrl 715 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦:𝐷1-1-onto𝐷)
72 f1omvdcnv 18333 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7371, 72syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7469, 73eqtrd 2814 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
75 simprr 760 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
7674, 75eqsstrd 3895 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋)
7761, 65, 76elrabd 3598 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
7833, 77sylan2b 584 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
791, 2, 3, 7, 28, 58, 78, 12issubgrpd2 18079 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  {crab 3092  cdif 3826  cun 3827  wss 3829  c0 4178   I cid 5311  ccnv 5406  dom cdm 5407  cres 5409  ccom 5411  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  Basecbs 16339  s cress 16340  +gcplusg 16421  0gc0g 16569  Grpcgrp 17891  invgcminusg 17892  SubGrpcsubg 18057  SymGrpcsymg 18266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-tset 16440  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-minusg 17895  df-subg 18060  df-symg 18267
This theorem is referenced by:  psgnunilem5  18383  psgnunilem5OLD  18384
  Copyright terms: Public domain W3C validator