MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgsssg Structured version   Visualization version   GIF version

Theorem symgsssg 19500
Description: The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgsssg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgsssg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}))
2 eqidd 2736 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2736 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4090 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 4032 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺))
8 difeq1 4129 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5919 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109sseq1d 4027 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((0g𝐺) ∖ I ) ⊆ 𝑋))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 19433 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2735 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18996 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 19434 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4135 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5919 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 6022 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4372 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 230 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5918 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5934 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2763 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0ss 4406 . . . . 5 ∅ ⊆ 𝑋
2624, 25eqsstri 4030 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ⊆ 𝑋
2718, 26eqsstrrdi 4051 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ⊆ 𝑋)
2810, 15, 27elrabd 3697 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
29 biid 261 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4129 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5919 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231sseq1d 4027 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑦 ∖ I ) ⊆ 𝑋))
3332elrab 3695 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋))
34 difeq1 4129 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5919 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635sseq1d 4027 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑧 ∖ I ) ⊆ 𝑋))
3736elrab 3695 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋))
38 difeq1 4129 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5919 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039sseq1d 4027 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋))
41123ad2ant1 1132 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝐺 ∈ Grp)
42 simp2l 1198 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
43 simp3l 1200 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑧𝐵)
44 eqid 2735 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18972 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1370 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 19416 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 584 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4135 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5919 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 mvdco 19478 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
52 simp2r 1199 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
53 simp3r 1201 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑧 ∖ I ) ⊆ 𝑋)
5452, 53unssd 4202 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ⊆ 𝑋)
5551, 54sstrid 4007 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦𝑧) ∖ I ) ⊆ 𝑋)
5650, 55eqsstrd 4034 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋)
5740, 46, 56elrabd 3697 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
5829, 33, 37, 57syl3anb 1160 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
59 difeq1 4129 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6059dmeqd 5919 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6160sseq1d 4027 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋))
62 simprl 771 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
63 eqid 2735 . . . . . 6 (invg𝐺) = (invg𝐺)
645, 63grpinvcl 19018 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6512, 62, 64syl2an2r 685 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6611, 5, 63symginv 19435 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6766ad2antrl 728 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) = 𝑦)
6867difeq1d 4135 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
6968dmeqd 5919 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7011, 5symgbasf1o 19407 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7170ad2antrl 728 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦:𝐷1-1-onto𝐷)
72 f1omvdcnv 19477 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7371, 72syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7469, 73eqtrd 2775 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
75 simprr 773 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
7674, 75eqsstrd 4034 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋)
7761, 65, 76elrabd 3697 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
7833, 77sylan2b 594 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
791, 2, 3, 7, 28, 58, 78, 12issubgrpd2 19173 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  cdif 3960  cun 3961  wss 3963  c0 4339   I cid 5582  ccnv 5688  dom cdm 5689  cres 5691  ccom 5693  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151  SymGrpcsymg 19401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-efmnd 18895  df-grp 18967  df-minusg 18968  df-subg 19154  df-symg 19402
This theorem is referenced by:  psgnunilem5  19527
  Copyright terms: Public domain W3C validator