MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgsssg Structured version   Visualization version   GIF version

Theorem symgsssg 19485
Description: The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgsssg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgsssg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2738 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}))
2 eqidd 2738 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2738 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 4080 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 4032 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺))
8 difeq1 4119 . . . . 5 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
98dmeqd 5916 . . . 4 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
109sseq1d 4015 . . 3 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((0g𝐺) ∖ I ) ⊆ 𝑋))
11 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
1211symggrp 19418 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
13 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
145, 13grpidcl 18983 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1512, 14syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
1611symgid 19419 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1716difeq1d 4125 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1817dmeqd 5916 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
19 resss 6019 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
20 ssdif0 4366 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
2119, 20mpbi 230 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
2221dmeqi 5915 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
23 dm0 5931 . . . . . 6 dom ∅ = ∅
2422, 23eqtri 2765 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
25 0ss 4400 . . . . 5 ∅ ⊆ 𝑋
2624, 25eqsstri 4030 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ⊆ 𝑋
2718, 26eqsstrrdi 4029 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ⊆ 𝑋)
2810, 15, 27elrabd 3694 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
29 biid 261 . . 3 (𝐷𝑉𝐷𝑉)
30 difeq1 4119 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3130dmeqd 5916 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3231sseq1d 4015 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑦 ∖ I ) ⊆ 𝑋))
3332elrab 3692 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋))
34 difeq1 4119 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3534dmeqd 5916 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3635sseq1d 4015 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑧 ∖ I ) ⊆ 𝑋))
3736elrab 3692 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋))
38 difeq1 4119 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
3938dmeqd 5916 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
4039sseq1d 4015 . . . 4 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋))
41123ad2ant1 1134 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝐺 ∈ Grp)
42 simp2l 1200 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
43 simp3l 1202 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑧𝐵)
44 eqid 2737 . . . . . 6 (+g𝐺) = (+g𝐺)
455, 44grpcl 18959 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4641, 42, 43, 45syl3anc 1373 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4711, 5, 44symgov 19401 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4842, 43, 47syl2anc 584 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4948difeq1d 4125 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
5049dmeqd 5916 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
51 mvdco 19463 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
52 simp2r 1201 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
53 simp3r 1203 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑧 ∖ I ) ⊆ 𝑋)
5452, 53unssd 4192 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ⊆ 𝑋)
5551, 54sstrid 3995 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦𝑧) ∖ I ) ⊆ 𝑋)
5650, 55eqsstrd 4018 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋)
5740, 46, 56elrabd 3694 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
5829, 33, 37, 57syl3anb 1162 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
59 difeq1 4119 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
6059dmeqd 5916 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
6160sseq1d 4015 . . . 4 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋))
62 simprl 771 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
63 eqid 2737 . . . . . 6 (invg𝐺) = (invg𝐺)
645, 63grpinvcl 19005 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6512, 62, 64syl2an2r 685 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6611, 5, 63symginv 19420 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6766ad2antrl 728 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) = 𝑦)
6867difeq1d 4125 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
6968dmeqd 5916 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
7011, 5symgbasf1o 19392 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7170ad2antrl 728 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦:𝐷1-1-onto𝐷)
72 f1omvdcnv 19462 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7371, 72syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7469, 73eqtrd 2777 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
75 simprr 773 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
7674, 75eqsstrd 4018 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋)
7761, 65, 76elrabd 3694 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
7833, 77sylan2b 594 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
791, 2, 3, 7, 28, 58, 78, 12issubgrpd2 19160 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  cun 3949  wss 3951  c0 4333   I cid 5577  ccnv 5684  dom cdm 5685  cres 5687  ccom 5689  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-subg 19141  df-symg 19387
This theorem is referenced by:  psgnunilem5  19512
  Copyright terms: Public domain W3C validator