Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grposnOLD Structured version   Visualization version   GIF version

Theorem grposnOLD 37861
Description: The group operation for the singleton group. Obsolete, use grp1 18944. instead. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
grposnOLD.1 𝐴 ∈ V
Assertion
Ref Expression
grposnOLD {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp

Proof of Theorem grposnOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5378 . 2 {𝐴} ∈ V
2 opex 5411 . . . . 5 𝐴, 𝐴⟩ ∈ V
3 grposnOLD.1 . . . . 5 𝐴 ∈ V
42, 3f1osn 6808 . . . 4 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}–1-1-onto→{𝐴}
5 f1of 6768 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}–1-1-onto→{𝐴} → {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}⟶{𝐴})
64, 5ax-mp 5 . . 3 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}⟶{𝐴}
73, 3xpsn 7079 . . . 4 ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩}
87feq2i 6648 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:({𝐴} × {𝐴})⟶{𝐴} ↔ {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}⟶{𝐴})
96, 8mpbir 231 . 2 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:({𝐴} × {𝐴})⟶{𝐴}
10 velsn 4595 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 velsn 4595 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
12 velsn 4595 . . 3 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
13 oveq2 7361 . . . . . 6 (𝑧 = 𝐴 → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
14 oveq1 7360 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦))
15 oveq2 7361 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
16 df-ov 7356 . . . . . . . . . . 11 (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}‘⟨𝐴, 𝐴⟩)
172, 3fvsn 7121 . . . . . . . . . . 11 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}‘⟨𝐴, 𝐴⟩) = 𝐴
1816, 17eqtri 2752 . . . . . . . . . 10 (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = 𝐴
1915, 18eqtrdi 2780 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = 𝐴)
2014, 19sylan9eq 2784 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = 𝐴)
2120oveq1d 7368 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
2221, 18eqtrdi 2780 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = 𝐴)
2313, 22sylan9eqr 2786 . . . . 5 (((𝑥 = 𝐴𝑦 = 𝐴) ∧ 𝑧 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
24233impa 1109 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
25 oveq1 7360 . . . . . 6 (𝑥 = 𝐴 → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)))
26 oveq1 7360 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧))
27 oveq2 7361 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
2827, 18eqtrdi 2780 . . . . . . . . 9 (𝑧 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
2926, 28sylan9eq 2784 . . . . . . . 8 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
3029oveq2d 7369 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
3130, 18eqtrdi 2780 . . . . . 6 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = 𝐴)
3225, 31sylan9eq 2784 . . . . 5 ((𝑥 = 𝐴 ∧ (𝑦 = 𝐴𝑧 = 𝐴)) → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = 𝐴)
33323impb 1114 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝐴) → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = 𝐴)
3424, 33eqtr4d 2767 . . 3 ((𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)))
3510, 11, 12, 34syl3anb 1161 . 2 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑧 ∈ {𝐴}) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)))
363snid 4616 . 2 𝐴 ∈ {𝐴}
37 oveq2 7361 . . . . 5 (𝑥 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
3837, 18eqtrdi 2780 . . . 4 (𝑥 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝐴)
39 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
4038, 39eqtr4d 2767 . . 3 (𝑥 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝑥)
4110, 40sylbi 217 . 2 (𝑥 ∈ {𝐴} → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝑥)
4236a1i 11 . 2 (𝑥 ∈ {𝐴} → 𝐴 ∈ {𝐴})
4310, 38sylbi 217 . 2 (𝑥 ∈ {𝐴} → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝐴)
441, 9, 35, 36, 41, 42, 43isgrpoi 30460 1 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cop 4585   × cxp 5621  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  GrpOpcgr 30451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-grpo 30455
This theorem is referenced by:  gidsn  37931
  Copyright terms: Public domain W3C validator