Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grposnOLD Structured version   Visualization version   GIF version

Theorem grposnOLD 36391
Description: The group operation for the singleton group. Obsolete, use grp1 18862. instead. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
grposnOLD.1 𝐴 ∈ V
Assertion
Ref Expression
grposnOLD {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp

Proof of Theorem grposnOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5392 . 2 {𝐴} ∈ V
2 opex 5425 . . . . 5 𝐴, 𝐴⟩ ∈ V
3 grposnOLD.1 . . . . 5 𝐴 ∈ V
42, 3f1osn 6828 . . . 4 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}–1-1-onto→{𝐴}
5 f1of 6788 . . . 4 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}–1-1-onto→{𝐴} → {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}⟶{𝐴})
64, 5ax-mp 5 . . 3 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}⟶{𝐴}
73, 3xpsn 7091 . . . 4 ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩}
87feq2i 6664 . . 3 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:({𝐴} × {𝐴})⟶{𝐴} ↔ {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:{⟨𝐴, 𝐴⟩}⟶{𝐴})
96, 8mpbir 230 . 2 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}:({𝐴} × {𝐴})⟶{𝐴}
10 velsn 4606 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 velsn 4606 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
12 velsn 4606 . . 3 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
13 oveq2 7369 . . . . . 6 (𝑧 = 𝐴 → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
14 oveq1 7368 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦))
15 oveq2 7369 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
16 df-ov 7364 . . . . . . . . . . 11 (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}‘⟨𝐴, 𝐴⟩)
172, 3fvsn 7131 . . . . . . . . . . 11 ({⟨⟨𝐴, 𝐴⟩, 𝐴⟩}‘⟨𝐴, 𝐴⟩) = 𝐴
1816, 17eqtri 2761 . . . . . . . . . 10 (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = 𝐴
1915, 18eqtrdi 2789 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = 𝐴)
2014, 19sylan9eq 2793 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐴) → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦) = 𝐴)
2120oveq1d 7376 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
2221, 18eqtrdi 2789 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴) = 𝐴)
2313, 22sylan9eqr 2795 . . . . 5 (((𝑥 = 𝐴𝑦 = 𝐴) ∧ 𝑧 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
24233impa 1111 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
25 oveq1 7368 . . . . . 6 (𝑥 = 𝐴 → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)))
26 oveq1 7368 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧))
27 oveq2 7369 . . . . . . . . . 10 (𝑧 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
2827, 18eqtrdi 2789 . . . . . . . . 9 (𝑧 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
2926, 28sylan9eq 2793 . . . . . . . 8 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = 𝐴)
3029oveq2d 7377 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
3130, 18eqtrdi 2789 . . . . . 6 ((𝑦 = 𝐴𝑧 = 𝐴) → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = 𝐴)
3225, 31sylan9eq 2793 . . . . 5 ((𝑥 = 𝐴 ∧ (𝑦 = 𝐴𝑧 = 𝐴)) → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = 𝐴)
33323impb 1116 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝐴) → (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)) = 𝐴)
3424, 33eqtr4d 2776 . . 3 ((𝑥 = 𝐴𝑦 = 𝐴𝑧 = 𝐴) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)))
3510, 11, 12, 34syl3anb 1162 . 2 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑧 ∈ {𝐴}) → ((𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑦){⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧) = (𝑥{⟨⟨𝐴, 𝐴⟩, 𝐴⟩} (𝑦{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑧)))
363snid 4626 . 2 𝐴 ∈ {𝐴}
37 oveq2 7369 . . . . 5 (𝑥 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝐴))
3837, 18eqtrdi 2789 . . . 4 (𝑥 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝐴)
39 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
4038, 39eqtr4d 2776 . . 3 (𝑥 = 𝐴 → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝑥)
4110, 40sylbi 216 . 2 (𝑥 ∈ {𝐴} → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝑥)
4236a1i 11 . 2 (𝑥 ∈ {𝐴} → 𝐴 ∈ {𝐴})
4310, 38sylbi 216 . 2 (𝑥 ∈ {𝐴} → (𝐴{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}𝑥) = 𝐴)
441, 9, 35, 36, 41, 42, 43isgrpoi 29489 1 {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3447  {csn 4590  cop 4596   × cxp 5635  wf 6496  1-1-ontowf1o 6499  cfv 6500  (class class class)co 7361  GrpOpcgr 29480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-grpo 29484
This theorem is referenced by:  gidsn  36461
  Copyright terms: Public domain W3C validator