| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrs1mnd | Structured version Visualization version GIF version | ||
| Description: The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21346. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrs1mnd | ⊢ 𝑅 ∈ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4086 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 3 | xrsbas 17510 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 4 | 2, 3 | ressbas2 17149 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 5 | 1, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 6 | xrex 12885 | . . . . 5 ⊢ ℝ* ∈ V | |
| 7 | 6 | difexi 5268 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 8 | xrsadd 21323 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 9 | 2, 8 | ressplusg 17195 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 10 | 7, 9 | mp1i 13 | . . 3 ⊢ (⊤ → +𝑒 = (+g‘𝑅)) |
| 11 | eldifsn 4738 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
| 12 | eldifsn 4738 | . . . . 5 ⊢ (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) | |
| 13 | xaddcl 13138 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*) | |
| 14 | 13 | ad2ant2r 747 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*) |
| 15 | xaddnemnf 13135 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞) | |
| 16 | eldifsn 4738 | . . . . . 6 ⊢ ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞)) | |
| 17 | 14, 15, 16 | sylanbrc 583 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
| 18 | 11, 12, 17 | syl2anb 598 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
| 19 | 18 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
| 20 | eldifsn 4738 | . . . . 5 ⊢ (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) | |
| 21 | xaddass 13148 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) | |
| 22 | 11, 12, 20, 21 | syl3anb 1161 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
| 24 | 0re 11114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 25 | rexr 11158 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
| 26 | renemnf 11161 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 27 | eldifsn 4738 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
| 28 | 25, 26, 27 | sylanbrc 583 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
| 29 | 24, 28 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
| 30 | eldifi 4081 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
| 31 | 30 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
| 32 | xaddlid 13141 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
| 34 | 31 | xaddridd 13142 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
| 35 | 5, 10, 19, 23, 29, 33, 34 | ismndd 18664 | . 2 ⊢ (⊤ → 𝑅 ∈ Mnd) |
| 36 | 35 | mptru 1548 | 1 ⊢ 𝑅 ∈ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 {csn 4576 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 -∞cmnf 11144 ℝ*cxr 11145 +𝑒 cxad 13009 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 ℝ*𝑠cxrs 17404 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-xadd 13012 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-xrs 17406 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: xrs1cmn 21380 xrge0subm 21381 xrge00 32993 |
| Copyright terms: Public domain | W3C validator |