![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrs1mnd | Structured version Visualization version GIF version |
Description: The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21343. (Contributed by Mario Carneiro, 27-Nov-2014.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrs1mnd | ⊢ 𝑅 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4132 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
3 | xrsbas 21318 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
4 | 2, 3 | ressbas2 17225 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
5 | 1, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
6 | xrex 13009 | . . . . 5 ⊢ ℝ* ∈ V | |
7 | 6 | difexi 5334 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
8 | xrsadd 21319 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
9 | 2, 8 | ressplusg 17278 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
10 | 7, 9 | mp1i 13 | . . 3 ⊢ (⊤ → +𝑒 = (+g‘𝑅)) |
11 | eldifsn 4795 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
12 | eldifsn 4795 | . . . . 5 ⊢ (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) | |
13 | xaddcl 13258 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*) | |
14 | 13 | ad2ant2r 745 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*) |
15 | xaddnemnf 13255 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞) | |
16 | eldifsn 4795 | . . . . . 6 ⊢ ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞)) | |
17 | 14, 15, 16 | sylanbrc 581 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
18 | 11, 12, 17 | syl2anb 596 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
19 | 18 | 3adant1 1127 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
20 | eldifsn 4795 | . . . . 5 ⊢ (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) | |
21 | xaddass 13268 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) | |
22 | 11, 12, 20, 21 | syl3anb 1158 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
23 | 22 | adantl 480 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
24 | 0re 11254 | . . . 4 ⊢ 0 ∈ ℝ | |
25 | rexr 11298 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
26 | renemnf 11301 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
27 | eldifsn 4795 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
28 | 25, 26, 27 | sylanbrc 581 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
29 | 24, 28 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
30 | eldifi 4127 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
31 | 30 | adantl 480 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
32 | xaddlid 13261 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
34 | 31 | xaddridd 13262 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
35 | 5, 10, 19, 23, 29, 33, 34 | ismndd 18723 | . 2 ⊢ (⊤ → 𝑅 ∈ Mnd) |
36 | 35 | mptru 1540 | 1 ⊢ 𝑅 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ≠ wne 2937 Vcvv 3473 ∖ cdif 3946 ⊆ wss 3949 {csn 4632 ‘cfv 6553 (class class class)co 7426 ℝcr 11145 0cc0 11146 -∞cmnf 11284 ℝ*cxr 11285 +𝑒 cxad 13130 Basecbs 17187 ↾s cress 17216 +gcplusg 17240 ℝ*𝑠cxrs 17489 Mndcmnd 18701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-xadd 13133 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-tset 17259 df-ple 17260 df-ds 17262 df-xrs 17491 df-mgm 18607 df-sgrp 18686 df-mnd 18702 |
This theorem is referenced by: xrs1cmn 21346 xrge0subm 21347 xrge00 32763 |
Copyright terms: Public domain | W3C validator |