MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1mnd Structured version   Visualization version   GIF version

Theorem xrs1mnd 20636
Description: The extended real numbers, restricted to * ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 20635. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1mnd 𝑅 ∈ Mnd

Proof of Theorem xrs1mnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 20614 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 16949 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4mp1i 13 . . 3 (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅))
6 xrex 12727 . . . . 5 * ∈ V
76difexi 5252 . . . 4 (ℝ* ∖ {-∞}) ∈ V
8 xrsadd 20615 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
92, 8ressplusg 17000 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
107, 9mp1i 13 . . 3 (⊤ → +𝑒 = (+g𝑅))
11 eldifsn 4720 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
12 eldifsn 4720 . . . . 5 (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ*𝑦 ≠ -∞))
13 xaddcl 12973 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
1413ad2ant2r 744 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
15 xaddnemnf 12970 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞)
16 eldifsn 4720 . . . . . 6 ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞))
1714, 15, 16sylanbrc 583 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
1811, 12, 17syl2anb 598 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
19183adant1 1129 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
20 eldifsn 4720 . . . . 5 (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ*𝑧 ≠ -∞))
21 xaddass 12983 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ*𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2211, 12, 20, 21syl3anb 1160 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2322adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
24 0re 10977 . . . 4 0 ∈ ℝ
25 rexr 11021 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
26 renemnf 11024 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
27 eldifsn 4720 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
2825, 26, 27sylanbrc 583 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
2924, 28mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
30 eldifi 4061 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
3130adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
32 xaddid2 12976 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
3331, 32syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
3431xaddid1d 12977 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
355, 10, 19, 23, 29, 33, 34ismndd 18407 . 2 (⊤ → 𝑅 ∈ Mnd)
3635mptru 1546 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  -∞cmnf 11007  *cxr 11008   +𝑒 cxad 12846  Basecbs 16912  s cress 16941  +gcplusg 16962  *𝑠cxrs 17211  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-xadd 12849  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-xrs 17213  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by:  xrs1cmn  20638  xrge0subm  20639  xrge00  31295
  Copyright terms: Public domain W3C validator