MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1mnd Structured version   Visualization version   GIF version

Theorem xrs1mnd 21445
Description: The extended real numbers, restricted to * ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21444. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1mnd 𝑅 ∈ Mnd

Proof of Theorem xrs1mnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4159 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 21419 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17296 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4mp1i 13 . . 3 (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅))
6 xrex 13052 . . . . 5 * ∈ V
76difexi 5348 . . . 4 (ℝ* ∖ {-∞}) ∈ V
8 xrsadd 21420 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
92, 8ressplusg 17349 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
107, 9mp1i 13 . . 3 (⊤ → +𝑒 = (+g𝑅))
11 eldifsn 4811 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
12 eldifsn 4811 . . . . 5 (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ*𝑦 ≠ -∞))
13 xaddcl 13301 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
1413ad2ant2r 746 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
15 xaddnemnf 13298 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞)
16 eldifsn 4811 . . . . . 6 ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞))
1714, 15, 16sylanbrc 582 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
1811, 12, 17syl2anb 597 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
19183adant1 1130 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
20 eldifsn 4811 . . . . 5 (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ*𝑧 ≠ -∞))
21 xaddass 13311 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ*𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2211, 12, 20, 21syl3anb 1161 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2322adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
24 0re 11292 . . . 4 0 ∈ ℝ
25 rexr 11336 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
26 renemnf 11339 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
27 eldifsn 4811 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
2825, 26, 27sylanbrc 582 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
2924, 28mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
30 eldifi 4154 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
3130adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
32 xaddlid 13304 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
3331, 32syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
3431xaddridd 13305 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
355, 10, 19, 23, 29, 33, 34ismndd 18794 . 2 (⊤ → 𝑅 ∈ Mnd)
3635mptru 1544 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  wss 3976  {csn 4648  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  -∞cmnf 11322  *cxr 11323   +𝑒 cxad 13173  Basecbs 17258  s cress 17287  +gcplusg 17311  *𝑠cxrs 17560  Mndcmnd 18772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-xadd 13176  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-xrs 17562  df-mgm 18678  df-sgrp 18757  df-mnd 18773
This theorem is referenced by:  xrs1cmn  21447  xrge0subm  21448  xrge00  32998
  Copyright terms: Public domain W3C validator