![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrs1mnd | Structured version Visualization version GIF version |
Description: The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21438. (Contributed by Mario Carneiro, 27-Nov-2014.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrs1mnd | ⊢ 𝑅 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4145 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
3 | xrsbas 21413 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
4 | 2, 3 | ressbas2 17282 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
5 | 1, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
6 | xrex 13026 | . . . . 5 ⊢ ℝ* ∈ V | |
7 | 6 | difexi 5335 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
8 | xrsadd 21414 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
9 | 2, 8 | ressplusg 17335 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
10 | 7, 9 | mp1i 13 | . . 3 ⊢ (⊤ → +𝑒 = (+g‘𝑅)) |
11 | eldifsn 4790 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
12 | eldifsn 4790 | . . . . 5 ⊢ (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) | |
13 | xaddcl 13277 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*) | |
14 | 13 | ad2ant2r 747 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*) |
15 | xaddnemnf 13274 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞) | |
16 | eldifsn 4790 | . . . . . 6 ⊢ ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞)) | |
17 | 14, 15, 16 | sylanbrc 583 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
18 | 11, 12, 17 | syl2anb 598 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
19 | 18 | 3adant1 1129 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
20 | eldifsn 4790 | . . . . 5 ⊢ (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) | |
21 | xaddass 13287 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) | |
22 | 11, 12, 20, 21 | syl3anb 1160 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
23 | 22 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
24 | 0re 11260 | . . . 4 ⊢ 0 ∈ ℝ | |
25 | rexr 11304 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
26 | renemnf 11307 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
27 | eldifsn 4790 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
28 | 25, 26, 27 | sylanbrc 583 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
29 | 24, 28 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
30 | eldifi 4140 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
31 | 30 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
32 | xaddlid 13280 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
34 | 31 | xaddridd 13281 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
35 | 5, 10, 19, 23, 29, 33, 34 | ismndd 18781 | . 2 ⊢ (⊤ → 𝑅 ∈ Mnd) |
36 | 35 | mptru 1543 | 1 ⊢ 𝑅 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1536 ⊤wtru 1537 ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 ∖ cdif 3959 ⊆ wss 3962 {csn 4630 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 -∞cmnf 11290 ℝ*cxr 11291 +𝑒 cxad 13149 Basecbs 17244 ↾s cress 17273 +gcplusg 17297 ℝ*𝑠cxrs 17546 Mndcmnd 18759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-xadd 13152 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-ds 17319 df-xrs 17548 df-mgm 18665 df-sgrp 18744 df-mnd 18760 |
This theorem is referenced by: xrs1cmn 21441 xrge0subm 21442 xrge00 32999 |
Copyright terms: Public domain | W3C validator |