| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrs1mnd | Structured version Visualization version GIF version | ||
| Description: The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21327. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrs1mnd | ⊢ 𝑅 ∈ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4102 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 3 | xrsbas 21302 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 4 | 2, 3 | ressbas2 17215 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 5 | 1, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 6 | xrex 12953 | . . . . 5 ⊢ ℝ* ∈ V | |
| 7 | 6 | difexi 5288 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 8 | xrsadd 21303 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 9 | 2, 8 | ressplusg 17261 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 10 | 7, 9 | mp1i 13 | . . 3 ⊢ (⊤ → +𝑒 = (+g‘𝑅)) |
| 11 | eldifsn 4753 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
| 12 | eldifsn 4753 | . . . . 5 ⊢ (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) | |
| 13 | xaddcl 13206 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*) | |
| 14 | 13 | ad2ant2r 747 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*) |
| 15 | xaddnemnf 13203 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞) | |
| 16 | eldifsn 4753 | . . . . . 6 ⊢ ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞)) | |
| 17 | 14, 15, 16 | sylanbrc 583 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
| 18 | 11, 12, 17 | syl2anb 598 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
| 19 | 18 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
| 20 | eldifsn 4753 | . . . . 5 ⊢ (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) | |
| 21 | xaddass 13216 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) | |
| 22 | 11, 12, 20, 21 | syl3anb 1161 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
| 24 | 0re 11183 | . . . 4 ⊢ 0 ∈ ℝ | |
| 25 | rexr 11227 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
| 26 | renemnf 11230 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 27 | eldifsn 4753 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
| 28 | 25, 26, 27 | sylanbrc 583 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
| 29 | 24, 28 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
| 30 | eldifi 4097 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
| 31 | 30 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
| 32 | xaddlid 13209 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
| 34 | 31 | xaddridd 13210 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
| 35 | 5, 10, 19, 23, 29, 33, 34 | ismndd 18690 | . 2 ⊢ (⊤ → 𝑅 ∈ Mnd) |
| 36 | 35 | mptru 1547 | 1 ⊢ 𝑅 ∈ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 -∞cmnf 11213 ℝ*cxr 11214 +𝑒 cxad 13077 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 ℝ*𝑠cxrs 17470 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-xadd 13080 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-xrs 17472 df-mgm 18574 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: xrs1cmn 21330 xrge0subm 21331 xrge00 32960 |
| Copyright terms: Public domain | W3C validator |