MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1mnd Structured version   Visualization version   GIF version

Theorem xrs1mnd 21378
Description: The extended real numbers, restricted to * ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21346. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1mnd 𝑅 ∈ Mnd

Proof of Theorem xrs1mnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4086 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 17510 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17149 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4mp1i 13 . . 3 (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅))
6 xrex 12885 . . . . 5 * ∈ V
76difexi 5268 . . . 4 (ℝ* ∖ {-∞}) ∈ V
8 xrsadd 21323 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
92, 8ressplusg 17195 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
107, 9mp1i 13 . . 3 (⊤ → +𝑒 = (+g𝑅))
11 eldifsn 4738 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
12 eldifsn 4738 . . . . 5 (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ*𝑦 ≠ -∞))
13 xaddcl 13138 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
1413ad2ant2r 747 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
15 xaddnemnf 13135 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞)
16 eldifsn 4738 . . . . . 6 ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞))
1714, 15, 16sylanbrc 583 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
1811, 12, 17syl2anb 598 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
19183adant1 1130 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
20 eldifsn 4738 . . . . 5 (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ*𝑧 ≠ -∞))
21 xaddass 13148 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ*𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2211, 12, 20, 21syl3anb 1161 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2322adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
24 0re 11114 . . . 4 0 ∈ ℝ
25 rexr 11158 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
26 renemnf 11161 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
27 eldifsn 4738 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
2825, 26, 27sylanbrc 583 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
2924, 28mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
30 eldifi 4081 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
3130adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
32 xaddlid 13141 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
3331, 32syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
3431xaddridd 13142 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
355, 10, 19, 23, 29, 33, 34ismndd 18664 . 2 (⊤ → 𝑅 ∈ Mnd)
3635mptru 1548 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  Vcvv 3436  cdif 3899  wss 3902  {csn 4576  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  -∞cmnf 11144  *cxr 11145   +𝑒 cxad 13009  Basecbs 17120  s cress 17141  +gcplusg 17161  *𝑠cxrs 17404  Mndcmnd 18642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-xadd 13012  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-xrs 17406  df-mgm 18548  df-sgrp 18627  df-mnd 18643
This theorem is referenced by:  xrs1cmn  21380  xrge0subm  21381  xrge00  32993
  Copyright terms: Public domain W3C validator