MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1mnd Structured version   Visualization version   GIF version

Theorem xrs1mnd 20982
Description: The extended real numbers, restricted to * ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 20981. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1mnd 𝑅 ∈ Mnd

Proof of Theorem xrs1mnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4131 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 20960 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17181 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4mp1i 13 . . 3 (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅))
6 xrex 12970 . . . . 5 * ∈ V
76difexi 5328 . . . 4 (ℝ* ∖ {-∞}) ∈ V
8 xrsadd 20961 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
92, 8ressplusg 17234 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
107, 9mp1i 13 . . 3 (⊤ → +𝑒 = (+g𝑅))
11 eldifsn 4790 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
12 eldifsn 4790 . . . . 5 (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ*𝑦 ≠ -∞))
13 xaddcl 13217 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
1413ad2ant2r 745 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
15 xaddnemnf 13214 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞)
16 eldifsn 4790 . . . . . 6 ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞))
1714, 15, 16sylanbrc 583 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
1811, 12, 17syl2anb 598 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
19183adant1 1130 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
20 eldifsn 4790 . . . . 5 (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ*𝑧 ≠ -∞))
21 xaddass 13227 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ*𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2211, 12, 20, 21syl3anb 1161 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2322adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
24 0re 11215 . . . 4 0 ∈ ℝ
25 rexr 11259 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
26 renemnf 11262 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
27 eldifsn 4790 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
2825, 26, 27sylanbrc 583 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
2924, 28mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
30 eldifi 4126 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
3130adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
32 xaddlid 13220 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
3331, 32syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
3431xaddridd 13221 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
355, 10, 19, 23, 29, 33, 34ismndd 18646 . 2 (⊤ → 𝑅 ∈ Mnd)
3635mptru 1548 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wne 2940  Vcvv 3474  cdif 3945  wss 3948  {csn 4628  cfv 6543  (class class class)co 7408  cr 11108  0cc0 11109  -∞cmnf 11245  *cxr 11246   +𝑒 cxad 13089  Basecbs 17143  s cress 17172  +gcplusg 17196  *𝑠cxrs 17445  Mndcmnd 18624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-xadd 13092  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-xrs 17447  df-mgm 18560  df-sgrp 18609  df-mnd 18625
This theorem is referenced by:  xrs1cmn  20984  xrge0subm  20985  xrge00  32182
  Copyright terms: Public domain W3C validator