Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvscl Structured version   Visualization version   GIF version

Theorem slmdvscl 31369
Description: Closure of scalar product for a semiring left module. (hvmulcl 29276 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvscl.v 𝑉 = (Base‘𝑊)
slmdvscl.f 𝐹 = (Scalar‘𝑊)
slmdvscl.s · = ( ·𝑠𝑊)
slmdvscl.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
slmdvscl ((𝑊 ∈ SLMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)

Proof of Theorem slmdvscl
StepHypRef Expression
1 biid 260 . 2 (𝑊 ∈ SLMod ↔ 𝑊 ∈ SLMod)
2 pm4.24 563 . 2 (𝑅𝐾 ↔ (𝑅𝐾𝑅𝐾))
3 pm4.24 563 . 2 (𝑋𝑉 ↔ (𝑋𝑉𝑋𝑉))
4 slmdvscl.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2738 . . . . 5 (+g𝑊) = (+g𝑊)
6 slmdvscl.s . . . . 5 · = ( ·𝑠𝑊)
7 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
8 slmdvscl.f . . . . 5 𝐹 = (Scalar‘𝑊)
9 slmdvscl.k . . . . 5 𝐾 = (Base‘𝐹)
10 eqid 2738 . . . . 5 (+g𝐹) = (+g𝐹)
11 eqid 2738 . . . . 5 (.r𝐹) = (.r𝐹)
12 eqid 2738 . . . . 5 (1r𝐹) = (1r𝐹)
13 eqid 2738 . . . . 5 (0g𝐹) = (0g𝐹)
144, 5, 6, 7, 8, 9, 10, 11, 12, 13slmdlema 31358 . . . 4 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊))))
1514simpld 494 . . 3 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋))))
1615simp1d 1140 . 2 ((𝑊 ∈ SLMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
171, 2, 3, 16syl3anb 1159 1 ((𝑊 ∈ SLMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  SLModcslmd 31355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-slmd 31356
This theorem is referenced by:  gsumvsca1  31381  gsumvsca2  31382  sitgaddlemb  32215
  Copyright terms: Public domain W3C validator