| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvscl | Structured version Visualization version GIF version | ||
| Description: Closure of scalar product for a semiring left module. (hvmulcl 30960 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmdvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
| slmdvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| slmdvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| slmdvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| slmdvscl | ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝑊 ∈ SLMod ↔ 𝑊 ∈ SLMod) | |
| 2 | pm4.24 563 | . 2 ⊢ (𝑅 ∈ 𝐾 ↔ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) | |
| 3 | pm4.24 563 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
| 4 | slmdvscl.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2734 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | slmdvscl.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2734 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 8 | slmdvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 9 | slmdvscl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2734 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 11 | eqid 2734 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 12 | eqid 2734 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 13 | eqid 2734 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | slmdlema 33148 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)))) |
| 16 | 15 | simp1d 1142 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
| 17 | 1, 2, 3, 16 | syl3anb 1161 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 .rcmulr 17274 Scalarcsca 17276 ·𝑠 cvsca 17277 0gc0g 17455 1rcur 20146 SLModcslmd 33145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-slmd 33146 |
| This theorem is referenced by: gsumvsca1 33171 gsumvsca2 33172 sitgaddlemb 34309 |
| Copyright terms: Public domain | W3C validator |