![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmdvscl | Structured version Visualization version GIF version |
Description: Closure of scalar product for a semiring left module. (hvmulcl 28477 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmdvscl.v | ⊢ 𝑉 = (Base‘𝑊) |
slmdvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
slmdvscl.s | ⊢ · = ( ·𝑠 ‘𝑊) |
slmdvscl.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
slmdvscl | ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 262 | . 2 ⊢ (𝑊 ∈ SLMod ↔ 𝑊 ∈ SLMod) | |
2 | pm4.24 564 | . 2 ⊢ (𝑅 ∈ 𝐾 ↔ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) | |
3 | pm4.24 564 | . 2 ⊢ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
4 | slmdvscl.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2797 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
6 | slmdvscl.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | eqid 2797 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | slmdvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | slmdvscl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2797 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
11 | eqid 2797 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
12 | eqid 2797 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
13 | eqid 2797 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | slmdlema 30465 | . . . 4 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋))) ∧ (((𝑅(.r‘𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r‘𝐹) · 𝑋) = 𝑋 ∧ ((0g‘𝐹) · 𝑋) = (0g‘𝑊)))) |
15 | 14 | simpld 495 | . . 3 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g‘𝑊)𝑋)) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)) ∧ ((𝑅(+g‘𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · 𝑋)))) |
16 | 15 | simp1d 1135 | . 2 ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
17 | 1, 2, 3, 16 | syl3anb 1154 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 +gcplusg 16398 .rcmulr 16399 Scalarcsca 16401 ·𝑠 cvsca 16402 0gc0g 16546 1rcur 18945 SLModcslmd 30462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-nul 5108 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-iota 6196 df-fv 6240 df-ov 7026 df-slmd 30463 |
This theorem is referenced by: gsumvsca1 30493 gsumvsca2 30494 sitgaddlemb 31219 |
Copyright terms: Public domain | W3C validator |