Step | Hyp | Ref
| Expression |
1 | | biid 260 |
. 2
β’ (π β SLMod β π β SLMod) |
2 | | pm4.24 564 |
. 2
β’ (π
β πΎ β (π
β πΎ β§ π
β πΎ)) |
3 | | pm4.24 564 |
. 2
β’ (π β π β (π β π β§ π β π)) |
4 | | slmdvscl.v |
. . . . 5
β’ π = (Baseβπ) |
5 | | eqid 2732 |
. . . . 5
β’
(+gβπ) = (+gβπ) |
6 | | slmdvscl.s |
. . . . 5
β’ Β· = (
Β·π βπ) |
7 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
8 | | slmdvscl.f |
. . . . 5
β’ πΉ = (Scalarβπ) |
9 | | slmdvscl.k |
. . . . 5
β’ πΎ = (BaseβπΉ) |
10 | | eqid 2732 |
. . . . 5
β’
(+gβπΉ) = (+gβπΉ) |
11 | | eqid 2732 |
. . . . 5
β’
(.rβπΉ) = (.rβπΉ) |
12 | | eqid 2732 |
. . . . 5
β’
(1rβπΉ) = (1rβπΉ) |
13 | | eqid 2732 |
. . . . 5
β’
(0gβπΉ) = (0gβπΉ) |
14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | slmdlema 32606 |
. . . 4
β’ ((π β SLMod β§ (π
β πΎ β§ π
β πΎ) β§ (π β π β§ π β π)) β (((π
Β· π) β π β§ (π
Β· (π(+gβπ)π)) = ((π
Β· π)(+gβπ)(π
Β· π)) β§ ((π
(+gβπΉ)π
) Β· π) = ((π
Β· π)(+gβπ)(π
Β· π))) β§ (((π
(.rβπΉ)π
) Β· π) = (π
Β· (π
Β· π)) β§ ((1rβπΉ) Β· π) = π β§ ((0gβπΉ) Β· π) = (0gβπ)))) |
15 | 14 | simpld 495 |
. . 3
β’ ((π β SLMod β§ (π
β πΎ β§ π
β πΎ) β§ (π β π β§ π β π)) β ((π
Β· π) β π β§ (π
Β· (π(+gβπ)π)) = ((π
Β· π)(+gβπ)(π
Β· π)) β§ ((π
(+gβπΉ)π
) Β· π) = ((π
Β· π)(+gβπ)(π
Β· π)))) |
16 | 15 | simp1d 1142 |
. 2
β’ ((π β SLMod β§ (π
β πΎ β§ π
β πΎ) β§ (π β π β§ π β π)) β (π
Β· π) β π) |
17 | 1, 2, 3, 16 | syl3anb 1161 |
1
β’ ((π β SLMod β§ π
β πΎ β§ π β π) β (π
Β· π) β π) |