| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan2i | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylan2i.1 | ⊢ (𝜑 → 𝜃) |
| sylan2i.2 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan2i | ⊢ (𝜓 → ((𝜒 ∧ 𝜑) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2i.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| 3 | sylan2i.2 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | sylan2d 605 | 1 ⊢ (𝜓 → ((𝜒 ∧ 𝜑) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: syl2ani 607 odi 8617 pssnn 9208 ltexprlem7 11082 ltaprlem 11084 sup2 12224 filufint 23928 pjnormssi 32187 poimirlem27 37654 poimirlem31 37658 sn-sup2 42501 pellex 42846 |
| Copyright terms: Public domain | W3C validator |