MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filufint Structured version   Visualization version   GIF version

Theorem filufint 23271
Description: A filter is equal to the intersection of the ultrafilters containing it. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filufint (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filufint
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . 5 𝑥 ∈ V
21elintrab 4921 . . . 4 (𝑥 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓))
3 filsspw 23202 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
433ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ 𝒫 𝑋)
5 difss 4091 . . . . . . . . . . . . . . 15 (𝑋𝑥) ⊆ 𝑋
6 filtop 23206 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
76difexd 5286 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Fil‘𝑋) → (𝑋𝑥) ∈ V)
873ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ V)
9 elpwg 4563 . . . . . . . . . . . . . . . 16 ((𝑋𝑥) ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
108, 9syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
115, 10mpbiri 257 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
1211snssd 4769 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ⊆ 𝒫 𝑋)
134, 12unssd 4146 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋)
14 ssun1 4132 . . . . . . . . . . . . . 14 𝐹 ⊆ (𝐹 ∪ {(𝑋𝑥)})
15 filn0 23213 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
16 ssn0 4360 . . . . . . . . . . . . . 14 ((𝐹 ⊆ (𝐹 ∪ {(𝑋𝑥)}) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
1714, 15, 16sylancr 587 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
18173ad2ant1 1133 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
19 elsni 4603 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑋𝑥)} → 𝑧 = (𝑋𝑥))
20 filelss 23203 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
21203adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → 𝑦𝑋)
22 reldisj 4411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑋 → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦 ⊆ (𝑋 ∖ (𝑋𝑥))))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦 ⊆ (𝑋 ∖ (𝑋𝑥))))
24 dfss4 4218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2524biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑋 → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2625sseq2d 3976 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑋 → (𝑦 ⊆ (𝑋 ∖ (𝑋𝑥)) ↔ 𝑦𝑥))
27263ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (𝑦 ⊆ (𝑋 ∖ (𝑋𝑥)) ↔ 𝑦𝑥))
2823, 27bitrd 278 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦𝑥))
29 filss 23204 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
30293exp2 1354 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (𝑦𝑥𝑥𝐹))))
31303imp 1111 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (𝑦𝑥𝑥𝐹))
3228, 31sylbid 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ → 𝑥𝐹))
3332necon3bd 2957 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (¬ 𝑥𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))
34333exp 1119 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (¬ 𝑥𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))))
3534com24 95 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → (𝑥𝑋 → (𝑦𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))))
36353imp1 1347 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑦𝐹) → (𝑦 ∩ (𝑋𝑥)) ≠ ∅)
37 ineq2 4166 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑋𝑥) → (𝑦𝑧) = (𝑦 ∩ (𝑋𝑥)))
3837neeq1d 3003 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑋𝑥) → ((𝑦𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑋𝑥)) ≠ ∅))
3936, 38syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑦𝐹) → (𝑧 = (𝑋𝑥) → (𝑦𝑧) ≠ ∅))
4039expimpd 454 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑦𝐹𝑧 = (𝑋𝑥)) → (𝑦𝑧) ≠ ∅))
4119, 40sylan2i 606 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑦𝐹𝑧 ∈ {(𝑋𝑥)}) → (𝑦𝑧) ≠ ∅))
4241ralrimivv 3195 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅)
43 filfbas 23199 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
44433ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ∈ (fBas‘𝑋))
455a1i 11 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ⊆ 𝑋)
46253ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
47 difeq2 4076 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑥) = ∅ → (𝑋 ∖ (𝑋𝑥)) = (𝑋 ∖ ∅))
48 dif0 4332 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∖ ∅) = 𝑋
4947, 48eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑥) = ∅ → (𝑋 ∖ (𝑋𝑥)) = 𝑋)
50493ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → (𝑋 ∖ (𝑋𝑥)) = 𝑋)
5146, 50eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑥 = 𝑋)
5263ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑋𝐹)
5351, 52eqeltrd 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑥𝐹)
54533expia 1121 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) = ∅ → 𝑥𝐹))
5554necon3bd 2957 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → (𝑋𝑥) ≠ ∅))
5655ex 413 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝑋 → (¬ 𝑥𝐹 → (𝑋𝑥) ≠ ∅)))
5756com23 86 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → (𝑥𝑋 → (𝑋𝑥) ≠ ∅)))
58573imp 1111 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ≠ ∅)
5963ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝑋𝐹)
60 snfbas 23217 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ⊆ 𝑋 ∧ (𝑋𝑥) ≠ ∅ ∧ 𝑋𝐹) → {(𝑋𝑥)} ∈ (fBas‘𝑋))
6145, 58, 59, 60syl3anc 1371 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ∈ (fBas‘𝑋))
62 fbunfip 23220 . . . . . . . . . . . . . 14 ((𝐹 ∈ (fBas‘𝑋) ∧ {(𝑋𝑥)} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})) ↔ ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅))
6344, 61, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})) ↔ ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅))
6442, 63mpbird 256 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
65 fsubbas 23218 . . . . . . . . . . . . . 14 (𝑋𝐹 → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
666, 65syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
67663ad2ant1 1133 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
6813, 18, 64, 67mpbir3and 1342 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋))
69 fgcl 23229 . . . . . . . . . . 11 ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋))
7068, 69syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋))
71 filssufil 23263 . . . . . . . . . . 11 ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
72 snex 5388 . . . . . . . . . . . . . . . . . . . . 21 {(𝑋𝑥)} ∈ V
73 unexg 7683 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ {(𝑋𝑥)} ∈ V) → (𝐹 ∪ {(𝑋𝑥)}) ∈ V)
7472, 73mpan2 689 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ∈ V)
75 ssfii 9355 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∪ {(𝑋𝑥)}) ∈ V → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
77763ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
7877unssad 4147 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
79 ssfg 23223 . . . . . . . . . . . . . . . . . 18 ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8068, 79syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8178, 80sstrd 3954 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8281ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
83 simpr 485 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
8482, 83sstrd 3954 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → 𝐹𝑓)
85 ufilfil 23255 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
86 0nelfil 23200 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝑓)
8785, 86syl 17 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (UFil‘𝑋) → ¬ ∅ ∈ 𝑓)
8887ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → ¬ ∅ ∈ 𝑓)
89 disjdif 4431 . . . . . . . . . . . . . . . . 17 (𝑥 ∩ (𝑋𝑥)) = ∅
9085ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → 𝑓 ∈ (Fil‘𝑋))
91 simprr 771 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → 𝑥𝑓)
9276unssbd 4148 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (Fil‘𝑋) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
93923ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
9493adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
9568adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋))
9695, 79syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
9794, 96sstrd 3954 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → {(𝑋𝑥)} ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
9897adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → {(𝑋𝑥)} ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
99 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
10098, 99sstrd 3954 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → {(𝑋𝑥)} ⊆ 𝑓)
101 snidg 4620 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑥) ∈ V → (𝑋𝑥) ∈ {(𝑋𝑥)})
1027, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Fil‘𝑋) → (𝑋𝑥) ∈ {(𝑋𝑥)})
1031023ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ {(𝑋𝑥)})
104103ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋𝑥) ∈ {(𝑋𝑥)})
105100, 104sseldd 3945 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋𝑥) ∈ 𝑓)
106 filin 23205 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓 ∧ (𝑋𝑥) ∈ 𝑓) → (𝑥 ∩ (𝑋𝑥)) ∈ 𝑓)
10790, 91, 105, 106syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑥 ∩ (𝑋𝑥)) ∈ 𝑓)
10889, 107eqeltrrid 2843 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → ∅ ∈ 𝑓)
109108expr 457 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝑥𝑓 → ∅ ∈ 𝑓))
11088, 109mtod 197 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → ¬ 𝑥𝑓)
11184, 110jca 512 . . . . . . . . . . . . 13 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝐹𝑓 ∧ ¬ 𝑥𝑓))
112111exp31 420 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑓 ∈ (UFil‘𝑋) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓 → (𝐹𝑓 ∧ ¬ 𝑥𝑓))))
113112reximdvai 3162 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
11471, 113syl5 34 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
11570, 114mpd 15 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓))
1161153expia 1121 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → (𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
117 filssufil 23263 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
118 filelss 23203 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
119118ex 413 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Fil‘𝑋) → (𝑥𝑓𝑥𝑋))
12085, 119syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ (UFil‘𝑋) → (𝑥𝑓𝑥𝑋))
121120con3d 152 . . . . . . . . . . . . . 14 (𝑓 ∈ (UFil‘𝑋) → (¬ 𝑥𝑋 → ¬ 𝑥𝑓))
122121impcom 408 . . . . . . . . . . . . 13 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → ¬ 𝑥𝑓)
123122a1d 25 . . . . . . . . . . . 12 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → (𝐹𝑓 → ¬ 𝑥𝑓))
124123ancld 551 . . . . . . . . . . 11 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → (𝐹𝑓 → (𝐹𝑓 ∧ ¬ 𝑥𝑓)))
125124reximdva 3165 . . . . . . . . . 10 𝑥𝑋 → (∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
126117, 125syl5com 31 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
127126adantr 481 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → (¬ 𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
128116, 127pm2.61d 179 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓))
129128ex 413 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
130 rexanali 3105 . . . . . 6 (∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓) ↔ ¬ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓))
131129, 130syl6ib 250 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → ¬ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓)))
132131con4d 115 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓) → 𝑥𝐹))
1332, 132biimtrid 241 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑥 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} → 𝑥𝐹))
134133ssrdv 3950 . 2 (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} ⊆ 𝐹)
135 ssintub 4927 . . 3 𝐹 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓}
136135a1i 11 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓})
137134, 136eqssd 3961 1 (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cint 4907  cfv 6496  (class class class)co 7357  ficfi 9346  fBascfbas 20784  filGencfg 20785  Filcfil 23196  UFilcufil 23250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-dju 9837  df-card 9875  df-ac 10052  df-fbas 20793  df-fg 20794  df-fil 23197  df-ufil 23252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator