MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filufint Structured version   Visualization version   GIF version

Theorem filufint 23071
Description: A filter is equal to the intersection of the ultrafilters containing it. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filufint (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filufint
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . 5 𝑥 ∈ V
21elintrab 4891 . . . 4 (𝑥 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓))
3 filsspw 23002 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
433ad2ant1 1132 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ 𝒫 𝑋)
5 difss 4066 . . . . . . . . . . . . . . 15 (𝑋𝑥) ⊆ 𝑋
6 filtop 23006 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
76difexd 5253 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Fil‘𝑋) → (𝑋𝑥) ∈ V)
873ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ V)
9 elpwg 4536 . . . . . . . . . . . . . . . 16 ((𝑋𝑥) ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
108, 9syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
115, 10mpbiri 257 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
1211snssd 4742 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ⊆ 𝒫 𝑋)
134, 12unssd 4120 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋)
14 ssun1 4106 . . . . . . . . . . . . . 14 𝐹 ⊆ (𝐹 ∪ {(𝑋𝑥)})
15 filn0 23013 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
16 ssn0 4334 . . . . . . . . . . . . . 14 ((𝐹 ⊆ (𝐹 ∪ {(𝑋𝑥)}) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
1714, 15, 16sylancr 587 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
18173ad2ant1 1132 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
19 elsni 4578 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑋𝑥)} → 𝑧 = (𝑋𝑥))
20 filelss 23003 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
21203adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → 𝑦𝑋)
22 reldisj 4385 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑋 → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦 ⊆ (𝑋 ∖ (𝑋𝑥))))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦 ⊆ (𝑋 ∖ (𝑋𝑥))))
24 dfss4 4192 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2524biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑋 → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2625sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑋 → (𝑦 ⊆ (𝑋 ∖ (𝑋𝑥)) ↔ 𝑦𝑥))
27263ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (𝑦 ⊆ (𝑋 ∖ (𝑋𝑥)) ↔ 𝑦𝑥))
2823, 27bitrd 278 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦𝑥))
29 filss 23004 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
30293exp2 1353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (𝑦𝑥𝑥𝐹))))
31303imp 1110 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (𝑦𝑥𝑥𝐹))
3228, 31sylbid 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ → 𝑥𝐹))
3332necon3bd 2957 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (¬ 𝑥𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))
34333exp 1118 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (¬ 𝑥𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))))
3534com24 95 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → (𝑥𝑋 → (𝑦𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))))
36353imp1 1346 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑦𝐹) → (𝑦 ∩ (𝑋𝑥)) ≠ ∅)
37 ineq2 4140 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑋𝑥) → (𝑦𝑧) = (𝑦 ∩ (𝑋𝑥)))
3837neeq1d 3003 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑋𝑥) → ((𝑦𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑋𝑥)) ≠ ∅))
3936, 38syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑦𝐹) → (𝑧 = (𝑋𝑥) → (𝑦𝑧) ≠ ∅))
4039expimpd 454 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑦𝐹𝑧 = (𝑋𝑥)) → (𝑦𝑧) ≠ ∅))
4119, 40sylan2i 606 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑦𝐹𝑧 ∈ {(𝑋𝑥)}) → (𝑦𝑧) ≠ ∅))
4241ralrimivv 3122 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅)
43 filfbas 22999 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
44433ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ∈ (fBas‘𝑋))
455a1i 11 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ⊆ 𝑋)
46253ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
47 difeq2 4051 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑥) = ∅ → (𝑋 ∖ (𝑋𝑥)) = (𝑋 ∖ ∅))
48 dif0 4306 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∖ ∅) = 𝑋
4947, 48eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑥) = ∅ → (𝑋 ∖ (𝑋𝑥)) = 𝑋)
50493ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → (𝑋 ∖ (𝑋𝑥)) = 𝑋)
5146, 50eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑥 = 𝑋)
5263ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑋𝐹)
5351, 52eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑥𝐹)
54533expia 1120 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) = ∅ → 𝑥𝐹))
5554necon3bd 2957 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → (𝑋𝑥) ≠ ∅))
5655ex 413 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝑋 → (¬ 𝑥𝐹 → (𝑋𝑥) ≠ ∅)))
5756com23 86 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → (𝑥𝑋 → (𝑋𝑥) ≠ ∅)))
58573imp 1110 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ≠ ∅)
5963ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝑋𝐹)
60 snfbas 23017 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ⊆ 𝑋 ∧ (𝑋𝑥) ≠ ∅ ∧ 𝑋𝐹) → {(𝑋𝑥)} ∈ (fBas‘𝑋))
6145, 58, 59, 60syl3anc 1370 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ∈ (fBas‘𝑋))
62 fbunfip 23020 . . . . . . . . . . . . . 14 ((𝐹 ∈ (fBas‘𝑋) ∧ {(𝑋𝑥)} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})) ↔ ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅))
6344, 61, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})) ↔ ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅))
6442, 63mpbird 256 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
65 fsubbas 23018 . . . . . . . . . . . . . 14 (𝑋𝐹 → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
666, 65syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
67663ad2ant1 1132 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
6813, 18, 64, 67mpbir3and 1341 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋))
69 fgcl 23029 . . . . . . . . . . 11 ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋))
7068, 69syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋))
71 filssufil 23063 . . . . . . . . . . 11 ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
72 snex 5354 . . . . . . . . . . . . . . . . . . . . 21 {(𝑋𝑥)} ∈ V
73 unexg 7599 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ {(𝑋𝑥)} ∈ V) → (𝐹 ∪ {(𝑋𝑥)}) ∈ V)
7472, 73mpan2 688 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ∈ V)
75 ssfii 9178 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∪ {(𝑋𝑥)}) ∈ V → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
77763ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
7877unssad 4121 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
79 ssfg 23023 . . . . . . . . . . . . . . . . . 18 ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8068, 79syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8178, 80sstrd 3931 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8281ad2antrr 723 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
83 simpr 485 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
8482, 83sstrd 3931 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → 𝐹𝑓)
85 ufilfil 23055 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
86 0nelfil 23000 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝑓)
8785, 86syl 17 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (UFil‘𝑋) → ¬ ∅ ∈ 𝑓)
8887ad2antlr 724 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → ¬ ∅ ∈ 𝑓)
89 disjdif 4405 . . . . . . . . . . . . . . . . 17 (𝑥 ∩ (𝑋𝑥)) = ∅
9085ad2antlr 724 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → 𝑓 ∈ (Fil‘𝑋))
91 simprr 770 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → 𝑥𝑓)
9276unssbd 4122 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (Fil‘𝑋) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
93923ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
9493adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
9568adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋))
9695, 79syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
9794, 96sstrd 3931 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → {(𝑋𝑥)} ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
9897adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → {(𝑋𝑥)} ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
99 simprl 768 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
10098, 99sstrd 3931 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → {(𝑋𝑥)} ⊆ 𝑓)
101 snidg 4595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑥) ∈ V → (𝑋𝑥) ∈ {(𝑋𝑥)})
1027, 101syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Fil‘𝑋) → (𝑋𝑥) ∈ {(𝑋𝑥)})
1031023ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ {(𝑋𝑥)})
104103ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋𝑥) ∈ {(𝑋𝑥)})
105100, 104sseldd 3922 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋𝑥) ∈ 𝑓)
106 filin 23005 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓 ∧ (𝑋𝑥) ∈ 𝑓) → (𝑥 ∩ (𝑋𝑥)) ∈ 𝑓)
10790, 91, 105, 106syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑥 ∩ (𝑋𝑥)) ∈ 𝑓)
10889, 107eqeltrrid 2844 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → ∅ ∈ 𝑓)
109108expr 457 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝑥𝑓 → ∅ ∈ 𝑓))
11088, 109mtod 197 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → ¬ 𝑥𝑓)
11184, 110jca 512 . . . . . . . . . . . . 13 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝐹𝑓 ∧ ¬ 𝑥𝑓))
112111exp31 420 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑓 ∈ (UFil‘𝑋) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓 → (𝐹𝑓 ∧ ¬ 𝑥𝑓))))
113112reximdvai 3200 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
11471, 113syl5 34 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
11570, 114mpd 15 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓))
1161153expia 1120 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → (𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
117 filssufil 23063 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
118 filelss 23003 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
119118ex 413 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Fil‘𝑋) → (𝑥𝑓𝑥𝑋))
12085, 119syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ (UFil‘𝑋) → (𝑥𝑓𝑥𝑋))
121120con3d 152 . . . . . . . . . . . . . 14 (𝑓 ∈ (UFil‘𝑋) → (¬ 𝑥𝑋 → ¬ 𝑥𝑓))
122121impcom 408 . . . . . . . . . . . . 13 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → ¬ 𝑥𝑓)
123122a1d 25 . . . . . . . . . . . 12 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → (𝐹𝑓 → ¬ 𝑥𝑓))
124123ancld 551 . . . . . . . . . . 11 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → (𝐹𝑓 → (𝐹𝑓 ∧ ¬ 𝑥𝑓)))
125124reximdva 3203 . . . . . . . . . 10 𝑥𝑋 → (∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
126117, 125syl5com 31 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
127126adantr 481 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → (¬ 𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
128116, 127pm2.61d 179 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓))
129128ex 413 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
130 rexanali 3192 . . . . . 6 (∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓) ↔ ¬ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓))
131129, 130syl6ib 250 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → ¬ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓)))
132131con4d 115 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓) → 𝑥𝐹))
1332, 132syl5bi 241 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑥 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} → 𝑥𝐹))
134133ssrdv 3927 . 2 (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} ⊆ 𝐹)
135 ssintub 4897 . . 3 𝐹 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓}
136135a1i 11 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓})
137134, 136eqssd 3938 1 (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cint 4879  cfv 6433  (class class class)co 7275  ficfi 9169  fBascfbas 20585  filGencfg 20586  Filcfil 22996  UFilcufil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-dju 9659  df-card 9697  df-ac 9872  df-fbas 20594  df-fg 20595  df-fil 22997  df-ufil 23052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator