MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup2 Structured version   Visualization version   GIF version

Theorem sup2 12222
Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
sup2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem sup2
StepHypRef Expression
1 peano2re 11432 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
21adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ))
4 ssel 3989 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
5 ltp1 12105 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
61ancli 548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
7 lttr 11335 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
873expb 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
96, 8sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
105, 9sylan2i 606 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1)))
1110exp4b 430 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1)))))
1211com34 91 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))))
1312pm2.43d 53 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1))))
1413imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))
15 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
165, 15syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1716adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1814, 17jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))
1918ex 412 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
204, 19syl6 35 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → (𝑦𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2120com23 86 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2221imp 406 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
2322a2d 29 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝐴 → (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑦𝐴𝑦 < (𝑥 + 1))))
2423ralimdv2 3161 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
2524expimpd 453 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
263, 25jcad 512 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
27 ovex 7464 . . . . . . . . . 10 (𝑥 + 1) ∈ V
28 eleq1 2827 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ))
29 breq2 5152 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧𝑦 < (𝑥 + 1)))
3029ralbidv 3176 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
3128, 30anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
3227, 31spcev 3606 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧))
3326, 32syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
3433exlimdv 1931 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
35 eleq1 2827 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ))
36 breq2 5152 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
3736ralbidv 3176 . . . . . . . . 9 (𝑧 = 𝑥 → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < 𝑥))
3835, 37anbi12d 632 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
3938cbvexvw 2034 . . . . . . 7 (∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4034, 39imbitrdi 251 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
41 df-rex 3069 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
42 df-rex 3069 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4340, 41, 423imtr4g 296 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4443adantr 480 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4544imdistani 568 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
46 df-3an 1088 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
47 df-3an 1088 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4845, 46, 473imtr4i 292 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
49 axsup 11334 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5048, 49syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339   class class class wbr 5148  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156   < clt 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493
This theorem is referenced by:  sup3  12223  nnunb  12520
  Copyright terms: Public domain W3C validator