MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup2 Structured version   Visualization version   GIF version

Theorem sup2 11238
Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
sup2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem sup2
StepHypRef Expression
1 peano2re 10468 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
21adantr 472 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ))
4 ssel 3757 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
5 ltp1 11120 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
61ancli 544 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
7 lttr 10373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
873expb 1149 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
96, 8sylan2 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
105, 9sylan2i 599 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1)))
1110exp4b 421 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1)))))
1211com34 91 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))))
1312pm2.43d 53 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1))))
1413imp 395 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))
15 breq1 4814 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
165, 15syl5ibrcom 238 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1716adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1814, 17jaod 885 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))
1918ex 401 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
204, 19syl6 35 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → (𝑦𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2120com23 86 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2221imp 395 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
2322a2d 29 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝐴 → (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑦𝐴𝑦 < (𝑥 + 1))))
2423ralimdv2 3108 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
2524expimpd 445 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
263, 25jcad 508 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
27 ovex 6878 . . . . . . . . . 10 (𝑥 + 1) ∈ V
28 eleq1 2832 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ))
29 breq2 4815 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧𝑦 < (𝑥 + 1)))
3029ralbidv 3133 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
3128, 30anbi12d 624 . . . . . . . . . 10 (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
3227, 31spcev 3453 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧))
3326, 32syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
3433exlimdv 2028 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
35 eleq1 2832 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ))
36 breq2 4815 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
3736ralbidv 3133 . . . . . . . . 9 (𝑧 = 𝑥 → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < 𝑥))
3835, 37anbi12d 624 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
3938cbvexvw 2137 . . . . . . 7 (∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4034, 39syl6ib 242 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
41 df-rex 3061 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
42 df-rex 3061 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4340, 41, 423imtr4g 287 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4443adantr 472 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4544imdistani 564 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
46 df-3an 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
47 df-3an 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4845, 46, 473imtr4i 283 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
49 axsup 10372 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5048, 49syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3734  c0 4081   class class class wbr 4811  (class class class)co 6846  cr 10192  1c1 10194   + caddc 10196   < clt 10332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528
This theorem is referenced by:  sup3  11239  nnunb  11539
  Copyright terms: Public domain W3C validator