Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellex Structured version   Visualization version   GIF version

Theorem pellex 41144
Description: Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellex ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
Distinct variable group:   𝑥,𝐷,𝑦

Proof of Theorem pellex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13877 . . . . . . . 8 (0...((abs‘𝑎) − 1)) ∈ Fin
2 xpfi 9261 . . . . . . . 8 (((0...((abs‘𝑎) − 1)) ∈ Fin ∧ (0...((abs‘𝑎) − 1)) ∈ Fin) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin)
31, 1, 2mp2an 690 . . . . . . 7 ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin
4 isfinite 9588 . . . . . . 7 (((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin ↔ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω)
53, 4mpbi 229 . . . . . 6 ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω
6 nnenom 13885 . . . . . . 7 ℕ ≈ ω
76ensymi 8944 . . . . . 6 ω ≈ ℕ
8 sdomentr 9055 . . . . . 6 ((((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω ∧ ω ≈ ℕ) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ)
95, 7, 8mp2an 690 . . . . 5 ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ
10 ensym 8943 . . . . . 6 ({⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ → ℕ ≈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
1110ad2antll 727 . . . . 5 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ℕ ≈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
12 sdomentr 9055 . . . . 5 ((((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ ∧ ℕ ≈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
139, 11, 12sylancr 587 . . . 4 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
14 opabssxp 5724 . . . . . . . 8 {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ⊆ (ℕ × ℕ)
1514sseli 3940 . . . . . . 7 (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 𝑑 ∈ (ℕ × ℕ))
16 simprrl 779 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (1st𝑑) ∈ ℕ)
1716nnzd 12526 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (1st𝑑) ∈ ℤ)
18 simpllr 774 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → 𝑎 ∈ ℤ)
19 simplr 767 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → 𝑎 ≠ 0)
20 nnabscl 15210 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
2118, 19, 20syl2anc 584 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (abs‘𝑎) ∈ ℕ)
22 zmodfz 13798 . . . . . . . . . . 11 (((1st𝑑) ∈ ℤ ∧ (abs‘𝑎) ∈ ℕ) → ((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
2317, 21, 22syl2anc 584 . . . . . . . . . 10 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → ((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
24 simprrr 780 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (2nd𝑑) ∈ ℕ)
2524nnzd 12526 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (2nd𝑑) ∈ ℤ)
26 zmodfz 13798 . . . . . . . . . . 11 (((2nd𝑑) ∈ ℤ ∧ (abs‘𝑎) ∈ ℕ) → ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
2725, 21, 26syl2anc 584 . . . . . . . . . 10 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
2823, 27jca 512 . . . . . . . . 9 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1))))
2928ex 413 . . . . . . . 8 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ)) → (((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))))
30 elxp7 7956 . . . . . . . 8 (𝑑 ∈ (ℕ × ℕ) ↔ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ)))
31 opelxp 5669 . . . . . . . 8 (⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ↔ (((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1))))
3229, 30, 313imtr4g 295 . . . . . . 7 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (𝑑 ∈ (ℕ × ℕ) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1)))))
3315, 32syl5 34 . . . . . 6 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1)))))
3433imp 407 . . . . 5 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))))
3534adantlrr 719 . . . 4 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) ∧ 𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))))
36 fveq2 6842 . . . . . 6 (𝑑 = 𝑒 → (1st𝑑) = (1st𝑒))
3736oveq1d 7372 . . . . 5 (𝑑 = 𝑒 → ((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)))
38 fveq2 6842 . . . . . 6 (𝑑 = 𝑒 → (2nd𝑑) = (2nd𝑒))
3938oveq1d 7372 . . . . 5 (𝑑 = 𝑒 → ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))
4037, 39opeq12d 4838 . . . 4 (𝑑 = 𝑒 → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)
4113, 35, 40fphpd 41125 . . 3 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩))
42 eleq1w 2820 . . . . . . . . . . . 12 (𝑏 = 𝑓 → (𝑏 ∈ ℕ ↔ 𝑓 ∈ ℕ))
43 eleq1w 2820 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐 ∈ ℕ ↔ 𝑔 ∈ ℕ))
4442, 43bi2anan9 637 . . . . . . . . . . 11 ((𝑏 = 𝑓𝑐 = 𝑔) → ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ↔ (𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ)))
45 oveq1 7364 . . . . . . . . . . . . 13 (𝑏 = 𝑓 → (𝑏↑2) = (𝑓↑2))
46 oveq1 7364 . . . . . . . . . . . . . 14 (𝑐 = 𝑔 → (𝑐↑2) = (𝑔↑2))
4746oveq2d 7373 . . . . . . . . . . . . 13 (𝑐 = 𝑔 → (𝐷 · (𝑐↑2)) = (𝐷 · (𝑔↑2)))
4845, 47oveqan12d 7376 . . . . . . . . . . . 12 ((𝑏 = 𝑓𝑐 = 𝑔) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = ((𝑓↑2) − (𝐷 · (𝑔↑2))))
4948eqeq1d 2738 . . . . . . . . . . 11 ((𝑏 = 𝑓𝑐 = 𝑔) → (((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎 ↔ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎))
5044, 49anbi12d 631 . . . . . . . . . 10 ((𝑏 = 𝑓𝑐 = 𝑔) → (((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎) ↔ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)))
5150cbvopabv 5178 . . . . . . . . 9 {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}
5251eleq2i 2829 . . . . . . . 8 (𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ↔ 𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)})
5352biimpi 215 . . . . . . 7 (𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)})
54 elopab 5484 . . . . . . . . 9 (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ↔ ∃𝑏𝑐(𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)))
55 elopab 5484 . . . . . . . . . . . 12 (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} ↔ ∃𝑓𝑔(𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)))
56 simp3ll 1244 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → 𝑏 ∈ ℕ)
57563expb 1120 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝑏 ∈ ℕ)
58573ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑏 ∈ ℕ)
59 simp3lr 1245 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → 𝑐 ∈ ℕ)
60593expb 1120 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝑐 ∈ ℕ)
61603ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑐 ∈ ℕ)
62 simp1lr 1237 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑎 ∈ ℤ)
63623adant1r 1177 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑎 ∈ ℤ)
64 simp-4l 781 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝐷 ∈ ℕ)
65643ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝐷 ∈ ℕ)
66 simp-4r 782 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → ¬ (√‘𝐷) ∈ ℚ)
67663ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ¬ (√‘𝐷) ∈ ℚ)
68 simp2ll 1240 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑓 ∈ ℕ)
69683adant2l 1178 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑓 ∈ ℕ)
70 simp2lr 1241 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑔 ∈ ℕ)
71703adant2l 1178 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑔 ∈ ℕ)
72 simp2l 1199 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑒 = ⟨𝑓, 𝑔⟩)
73 simp1rl 1238 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑑 = ⟨𝑏, 𝑐⟩)
74 simp3l 1201 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑑𝑒)
75 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → 𝑑𝑒)
76 simp2 1137 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → 𝑑 = ⟨𝑏, 𝑐⟩)
77 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → 𝑒 = ⟨𝑓, 𝑔⟩)
7875, 76, 773netr3d 3020 . . . . . . . . . . . . . . . . 17 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → ⟨𝑏, 𝑐⟩ ≠ ⟨𝑓, 𝑔⟩)
79 vex 3449 . . . . . . . . . . . . . . . . . . 19 𝑏 ∈ V
80 vex 3449 . . . . . . . . . . . . . . . . . . 19 𝑐 ∈ V
8179, 80opth 5433 . . . . . . . . . . . . . . . . . 18 (⟨𝑏, 𝑐⟩ = ⟨𝑓, 𝑔⟩ ↔ (𝑏 = 𝑓𝑐 = 𝑔))
8281necon3abii 2990 . . . . . . . . . . . . . . . . 17 (⟨𝑏, 𝑐⟩ ≠ ⟨𝑓, 𝑔⟩ ↔ ¬ (𝑏 = 𝑓𝑐 = 𝑔))
8378, 82sylib 217 . . . . . . . . . . . . . . . 16 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → ¬ (𝑏 = 𝑓𝑐 = 𝑔))
8472, 73, 74, 83syl3anc 1371 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ¬ (𝑏 = 𝑓𝑐 = 𝑔))
85 simp1lr 1237 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑎 ≠ 0)
86 simp1rr 1239 . . . . . . . . . . . . . . . 16 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)
87863adant1l 1176 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)
88 simp2rr 1243 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)
89 simp3r 1202 . . . . . . . . . . . . . . . . 17 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)
90 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)
91 ovex 7390 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑑) mod (abs‘𝑎)) ∈ V
92 ovex 7390 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑑) mod (abs‘𝑎)) ∈ V
9391, 92opth 5433 . . . . . . . . . . . . . . . . . . 19 (⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩ ↔ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))))
9490, 93sylib 217 . . . . . . . . . . . . . . . . . 18 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))))
95 simprl 769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)))
96 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → 𝑑 = ⟨𝑏, 𝑐⟩)
9796fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑑) = (1st ‘⟨𝑏, 𝑐⟩))
9879, 80op1st 7929 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑏, 𝑐⟩) = 𝑏
9997, 98eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑑) = 𝑏)
10099oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((1st𝑑) mod (abs‘𝑎)) = (𝑏 mod (abs‘𝑎)))
101 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → 𝑒 = ⟨𝑓, 𝑔⟩)
102101fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑒) = (1st ‘⟨𝑓, 𝑔⟩))
103 vex 3449 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
104 vex 3449 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑔 ∈ V
105103, 104op1st 7929 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑓, 𝑔⟩) = 𝑓
106102, 105eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑒) = 𝑓)
107106oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((1st𝑒) mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)))
10895, 100, 1073eqtr3d 2784 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)))
109 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))
11096fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑑) = (2nd ‘⟨𝑏, 𝑐⟩))
11179, 80op2nd 7930 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑏, 𝑐⟩) = 𝑐
112110, 111eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑑) = 𝑐)
113112oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((2nd𝑑) mod (abs‘𝑎)) = (𝑐 mod (abs‘𝑎)))
114101fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑒) = (2nd ‘⟨𝑓, 𝑔⟩))
115103, 104op2nd 7930 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑓, 𝑔⟩) = 𝑔
116114, 115eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑒) = 𝑔)
117116oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((2nd𝑒) mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))
118109, 113, 1173eqtr3d 2784 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))
119108, 118jca 512 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))
120119ex 413 . . . . . . . . . . . . . . . . . . 19 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) → ((((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))))
1211203adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ((((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))))
12294, 121mpd 15 . . . . . . . . . . . . . . . . 17 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))
12373, 72, 89, 122syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))
124123simpld 495 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → (𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)))
125123simprd 496 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))
12658, 61, 63, 65, 67, 69, 71, 84, 85, 87, 88, 124, 125pellexlem6 41143 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
1271263exp 1119 . . . . . . . . . . . . 13 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
128127exlimdvv 1937 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → (∃𝑓𝑔(𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
12955, 128biimtrid 241 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
130129ex 413 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))))
131130exlimdvv 1937 . . . . . . . . 9 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (∃𝑏𝑐(𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))))
13254, 131biimtrid 241 . . . . . . . 8 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))))
133132impd 411 . . . . . . 7 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ∧ 𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
13453, 133sylan2i 606 . . . . . 6 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ∧ 𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
135134rexlimdvv 3204 . . . . 5 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))
136135imp 407 . . . 4 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ ∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
137136adantlrr 719 . . 3 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) ∧ ∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
13841, 137mpdan 685 . 2 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
139 pellexlem5 41142 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑎 ∈ ℤ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ))
140138, 139r19.29a 3159 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cop 4592   class class class wbr 5105  {copab 5167   × cxp 5631  cfv 6496  (class class class)co 7357  ωcom 7802  1st c1st 7919  2nd c2nd 7920  cen 8880  csdm 8882  Fincfn 8883  0cc0 11051  1c1 11052   · cmul 11056  cmin 11385  cn 12153  2c2 12208  cz 12499  cq 12873  ...cfz 13424   mod cmo 13774  cexp 13967  csqrt 15118  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ico 13270  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611
This theorem is referenced by:  pellqrex  41188
  Copyright terms: Public domain W3C validator