Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellex Structured version   Visualization version   GIF version

Theorem pellex 42825
Description: Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellex ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
Distinct variable group:   𝑥,𝐷,𝑦

Proof of Theorem pellex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13995 . . . . . . . 8 (0...((abs‘𝑎) − 1)) ∈ Fin
2 xpfi 9335 . . . . . . . 8 (((0...((abs‘𝑎) − 1)) ∈ Fin ∧ (0...((abs‘𝑎) − 1)) ∈ Fin) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin)
31, 1, 2mp2an 692 . . . . . . 7 ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin
4 isfinite 9671 . . . . . . 7 (((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin ↔ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω)
53, 4mpbi 230 . . . . . 6 ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω
6 nnenom 14003 . . . . . . 7 ℕ ≈ ω
76ensymi 9023 . . . . . 6 ω ≈ ℕ
8 sdomentr 9130 . . . . . 6 ((((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω ∧ ω ≈ ℕ) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ)
95, 7, 8mp2an 692 . . . . 5 ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ
10 ensym 9022 . . . . . 6 ({⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ → ℕ ≈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
1110ad2antll 729 . . . . 5 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ℕ ≈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
12 sdomentr 9130 . . . . 5 ((((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ ∧ ℕ ≈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
139, 11, 12sylancr 587 . . . 4 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)})
14 opabssxp 5752 . . . . . . . 8 {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ⊆ (ℕ × ℕ)
1514sseli 3959 . . . . . . 7 (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 𝑑 ∈ (ℕ × ℕ))
16 simprrl 780 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (1st𝑑) ∈ ℕ)
1716nnzd 12620 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (1st𝑑) ∈ ℤ)
18 simpllr 775 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → 𝑎 ∈ ℤ)
19 simplr 768 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → 𝑎 ≠ 0)
20 nnabscl 15349 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℕ)
2118, 19, 20syl2anc 584 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (abs‘𝑎) ∈ ℕ)
22 zmodfz 13915 . . . . . . . . . . 11 (((1st𝑑) ∈ ℤ ∧ (abs‘𝑎) ∈ ℕ) → ((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
2317, 21, 22syl2anc 584 . . . . . . . . . 10 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → ((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
24 simprrr 781 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (2nd𝑑) ∈ ℕ)
2524nnzd 12620 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (2nd𝑑) ∈ ℤ)
26 zmodfz 13915 . . . . . . . . . . 11 (((2nd𝑑) ∈ ℤ ∧ (abs‘𝑎) ∈ ℕ) → ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
2725, 21, 26syl2anc 584 . . . . . . . . . 10 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))
2823, 27jca 511 . . . . . . . . 9 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ))) → (((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1))))
2928ex 412 . . . . . . . 8 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ)) → (((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))))
30 elxp7 8028 . . . . . . . 8 (𝑑 ∈ (ℕ × ℕ) ↔ (𝑑 ∈ (V × V) ∧ ((1st𝑑) ∈ ℕ ∧ (2nd𝑑) ∈ ℕ)))
31 opelxp 5695 . . . . . . . 8 (⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ↔ (((1st𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1))))
3229, 30, 313imtr4g 296 . . . . . . 7 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (𝑑 ∈ (ℕ × ℕ) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1)))))
3315, 32syl5 34 . . . . . 6 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1)))))
3433imp 406 . . . . 5 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))))
3534adantlrr 721 . . . 4 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) ∧ 𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ ∈ ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))))
36 fveq2 6881 . . . . . 6 (𝑑 = 𝑒 → (1st𝑑) = (1st𝑒))
3736oveq1d 7425 . . . . 5 (𝑑 = 𝑒 → ((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)))
38 fveq2 6881 . . . . . 6 (𝑑 = 𝑒 → (2nd𝑑) = (2nd𝑒))
3938oveq1d 7425 . . . . 5 (𝑑 = 𝑒 → ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))
4037, 39opeq12d 4862 . . . 4 (𝑑 = 𝑒 → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)
4113, 35, 40fphpd 42806 . . 3 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩))
42 eleq1w 2818 . . . . . . . . . . . 12 (𝑏 = 𝑓 → (𝑏 ∈ ℕ ↔ 𝑓 ∈ ℕ))
43 eleq1w 2818 . . . . . . . . . . . 12 (𝑐 = 𝑔 → (𝑐 ∈ ℕ ↔ 𝑔 ∈ ℕ))
4442, 43bi2anan9 638 . . . . . . . . . . 11 ((𝑏 = 𝑓𝑐 = 𝑔) → ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ↔ (𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ)))
45 oveq1 7417 . . . . . . . . . . . . 13 (𝑏 = 𝑓 → (𝑏↑2) = (𝑓↑2))
46 oveq1 7417 . . . . . . . . . . . . . 14 (𝑐 = 𝑔 → (𝑐↑2) = (𝑔↑2))
4746oveq2d 7426 . . . . . . . . . . . . 13 (𝑐 = 𝑔 → (𝐷 · (𝑐↑2)) = (𝐷 · (𝑔↑2)))
4845, 47oveqan12d 7429 . . . . . . . . . . . 12 ((𝑏 = 𝑓𝑐 = 𝑔) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = ((𝑓↑2) − (𝐷 · (𝑔↑2))))
4948eqeq1d 2738 . . . . . . . . . . 11 ((𝑏 = 𝑓𝑐 = 𝑔) → (((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎 ↔ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎))
5044, 49anbi12d 632 . . . . . . . . . 10 ((𝑏 = 𝑓𝑐 = 𝑔) → (((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎) ↔ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)))
5150cbvopabv 5197 . . . . . . . . 9 {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}
5251eleq2i 2827 . . . . . . . 8 (𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ↔ 𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)})
5352biimpi 216 . . . . . . 7 (𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)})
54 elopab 5507 . . . . . . . . 9 (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ↔ ∃𝑏𝑐(𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)))
55 elopab 5507 . . . . . . . . . . . 12 (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} ↔ ∃𝑓𝑔(𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)))
56 simp3ll 1245 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → 𝑏 ∈ ℕ)
57563expb 1120 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝑏 ∈ ℕ)
58573ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑏 ∈ ℕ)
59 simp3lr 1246 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → 𝑐 ∈ ℕ)
60593expb 1120 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝑐 ∈ ℕ)
61603ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑐 ∈ ℕ)
62 simp1lr 1238 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑎 ∈ ℤ)
63623adant1r 1178 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑎 ∈ ℤ)
64 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝐷 ∈ ℕ)
65643ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝐷 ∈ ℕ)
66 simp-4r 783 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → ¬ (√‘𝐷) ∈ ℚ)
67663ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ¬ (√‘𝐷) ∈ ℚ)
68 simp2ll 1241 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑓 ∈ ℕ)
69683adant2l 1179 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑓 ∈ ℕ)
70 simp2lr 1242 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑔 ∈ ℕ)
71703adant2l 1179 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑔 ∈ ℕ)
72 simp2l 1200 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑒 = ⟨𝑓, 𝑔⟩)
73 simp1rl 1239 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑑 = ⟨𝑏, 𝑐⟩)
74 simp3l 1202 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑑𝑒)
75 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → 𝑑𝑒)
76 simp2 1137 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → 𝑑 = ⟨𝑏, 𝑐⟩)
77 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → 𝑒 = ⟨𝑓, 𝑔⟩)
7875, 76, 773netr3d 3009 . . . . . . . . . . . . . . . . 17 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → ⟨𝑏, 𝑐⟩ ≠ ⟨𝑓, 𝑔⟩)
79 vex 3468 . . . . . . . . . . . . . . . . . . 19 𝑏 ∈ V
80 vex 3468 . . . . . . . . . . . . . . . . . . 19 𝑐 ∈ V
8179, 80opth 5456 . . . . . . . . . . . . . . . . . 18 (⟨𝑏, 𝑐⟩ = ⟨𝑓, 𝑔⟩ ↔ (𝑏 = 𝑓𝑐 = 𝑔))
8281necon3abii 2979 . . . . . . . . . . . . . . . . 17 (⟨𝑏, 𝑐⟩ ≠ ⟨𝑓, 𝑔⟩ ↔ ¬ (𝑏 = 𝑓𝑐 = 𝑔))
8378, 82sylib 218 . . . . . . . . . . . . . . . 16 ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ 𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑑𝑒) → ¬ (𝑏 = 𝑓𝑐 = 𝑔))
8472, 73, 74, 83syl3anc 1373 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ¬ (𝑏 = 𝑓𝑐 = 𝑔))
85 simp1lr 1238 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → 𝑎 ≠ 0)
86 simp1rr 1240 . . . . . . . . . . . . . . . 16 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)
87863adant1l 1177 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)
88 simp2rr 1244 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)
89 simp3r 1203 . . . . . . . . . . . . . . . . 17 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)
90 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)
91 ovex 7443 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑑) mod (abs‘𝑎)) ∈ V
92 ovex 7443 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑑) mod (abs‘𝑎)) ∈ V
9391, 92opth 5456 . . . . . . . . . . . . . . . . . . 19 (⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩ ↔ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))))
9490, 93sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))))
95 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)))
96 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → 𝑑 = ⟨𝑏, 𝑐⟩)
9796fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑑) = (1st ‘⟨𝑏, 𝑐⟩))
9879, 80op1st 8001 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑏, 𝑐⟩) = 𝑏
9997, 98eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑑) = 𝑏)
10099oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((1st𝑑) mod (abs‘𝑎)) = (𝑏 mod (abs‘𝑎)))
101 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → 𝑒 = ⟨𝑓, 𝑔⟩)
102101fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑒) = (1st ‘⟨𝑓, 𝑔⟩))
103 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
104 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑔 ∈ V
105103, 104op1st 8001 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st ‘⟨𝑓, 𝑔⟩) = 𝑓
106102, 105eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (1st𝑒) = 𝑓)
107106oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((1st𝑒) mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)))
10895, 100, 1073eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)))
109 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))
11096fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑑) = (2nd ‘⟨𝑏, 𝑐⟩))
11179, 80op2nd 8002 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑏, 𝑐⟩) = 𝑐
112110, 111eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑑) = 𝑐)
113112oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((2nd𝑑) mod (abs‘𝑎)) = (𝑐 mod (abs‘𝑎)))
114101fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑒) = (2nd ‘⟨𝑓, 𝑔⟩))
115103, 104op2nd 8002 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ‘⟨𝑓, 𝑔⟩) = 𝑔
116114, 115eqtrdi 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (2nd𝑒) = 𝑔)
117116oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((2nd𝑒) mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))
118109, 113, 1173eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))
119108, 118jca 511 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) ∧ (((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎)))) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))
120119ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩) → ((((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))))
1211203adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ((((1st𝑑) mod (abs‘𝑎)) = ((1st𝑒) mod (abs‘𝑎)) ∧ ((2nd𝑑) mod (abs‘𝑎)) = ((2nd𝑒) mod (abs‘𝑎))) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))))
12294, 121mpd 15 . . . . . . . . . . . . . . . . 17 ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ 𝑒 = ⟨𝑓, 𝑔⟩ ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))
12373, 72, 89, 122syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))
124123simpld 494 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → (𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)))
125123simprd 495 . . . . . . . . . . . . . . 15 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))
12658, 61, 63, 65, 67, 69, 71, 84, 85, 87, 88, 124, 125pellexlem6 42824 . . . . . . . . . . . . . 14 ((((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
1271263exp 1119 . . . . . . . . . . . . 13 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → ((𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
128127exlimdvv 1934 . . . . . . . . . . . 12 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → (∃𝑓𝑔(𝑒 = ⟨𝑓, 𝑔⟩ ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
12955, 128biimtrid 242 . . . . . . . . . . 11 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
130129ex 412 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))))
131130exlimdvv 1934 . . . . . . . . 9 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (∃𝑏𝑐(𝑑 = ⟨𝑏, 𝑐⟩ ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))))
13254, 131biimtrid 242 . . . . . . . 8 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → (𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))))
133132impd 410 . . . . . . 7 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ∧ 𝑒 ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
13453, 133sylan2i 606 . . . . . 6 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → ((𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ∧ 𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ((𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))
135134rexlimdvv 3201 . . . . 5 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) → (∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))
136135imp 406 . . . 4 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ ∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
137136adantlrr 721 . . 3 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) ∧ ∃𝑑 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑𝑒 ∧ ⟨((1st𝑑) mod (abs‘𝑎)), ((2nd𝑑) mod (abs‘𝑎))⟩ = ⟨((1st𝑒) mod (abs‘𝑎)), ((2nd𝑒) mod (abs‘𝑎))⟩)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
13841, 137mpdan 687 . 2 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
139 pellexlem5 42823 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑎 ∈ ℤ (𝑎 ≠ 0 ∧ {⟨𝑏, 𝑐⟩ ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ))
140138, 139r19.29a 3149 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cop 4612   class class class wbr 5124  {copab 5186   × cxp 5657  cfv 6536  (class class class)co 7410  ωcom 7866  1st c1st 7991  2nd c2nd 7992  cen 8961  csdm 8963  Fincfn 8964  0cc0 11134  1c1 11135   · cmul 11139  cmin 11471  cn 12245  2c2 12300  cz 12593  cq 12969  ...cfz 13529   mod cmo 13891  cexp 14084  csqrt 15257  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-ico 13373  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-numer 16759  df-denom 16760
This theorem is referenced by:  pellqrex  42869
  Copyright terms: Public domain W3C validator