Step | Hyp | Ref
| Expression |
1 | | fzfi 13403 |
. . . . . . . 8
⊢
(0...((abs‘𝑎)
− 1)) ∈ Fin |
2 | | xpfi 8836 |
. . . . . . . 8
⊢
(((0...((abs‘𝑎) − 1)) ∈ Fin ∧
(0...((abs‘𝑎) −
1)) ∈ Fin) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈
Fin) |
3 | 1, 1, 2 | mp2an 691 |
. . . . . . 7
⊢
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin |
4 | | isfinite 9162 |
. . . . . . 7
⊢
(((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ∈ Fin ↔
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))) ≺
ω) |
5 | 3, 4 | mpbi 233 |
. . . . . 6
⊢
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))) ≺
ω |
6 | | nnenom 13411 |
. . . . . . 7
⊢ ℕ
≈ ω |
7 | 6 | ensymi 8591 |
. . . . . 6
⊢ ω
≈ ℕ |
8 | | sdomentr 8687 |
. . . . . 6
⊢
((((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ω
∧ ω ≈ ℕ) → ((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺
ℕ) |
9 | 5, 7, 8 | mp2an 691 |
. . . . 5
⊢
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))) ≺
ℕ |
10 | | ensym 8590 |
. . . . . 6
⊢
({〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ → ℕ ≈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) |
11 | 10 | ad2antll 728 |
. . . . 5
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ (𝑎 ≠ 0
∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ℕ ≈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) |
12 | | sdomentr 8687 |
. . . . 5
⊢
((((0...((abs‘𝑎) − 1)) × (0...((abs‘𝑎) − 1))) ≺ ℕ
∧ ℕ ≈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ((0...((abs‘𝑎) − 1)) ×
(0...((abs‘𝑎) −
1))) ≺ {〈𝑏,
𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) |
13 | 9, 11, 12 | sylancr 590 |
. . . 4
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ (𝑎 ≠ 0
∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) →
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))) ≺ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) |
14 | | opabssxp 5618 |
. . . . . . . 8
⊢
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ⊆ (ℕ ×
ℕ) |
15 | 14 | sseli 3891 |
. . . . . . 7
⊢ (𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 𝑑 ∈ (ℕ ×
ℕ)) |
16 | | simprrl 780 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → (1st
‘𝑑) ∈
ℕ) |
17 | 16 | nnzd 12139 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → (1st
‘𝑑) ∈
ℤ) |
18 | | simpllr 775 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → 𝑎 ∈ ℤ) |
19 | | simplr 768 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → 𝑎 ≠ 0) |
20 | | nnabscl 14747 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℤ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈
ℕ) |
21 | 18, 19, 20 | syl2anc 587 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → (abs‘𝑎) ∈
ℕ) |
22 | | zmodfz 13324 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑑) ∈ ℤ ∧ (abs‘𝑎) ∈ ℕ) →
((1st ‘𝑑)
mod (abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1))) |
23 | 17, 21, 22 | syl2anc 587 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → ((1st
‘𝑑) mod
(abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1))) |
24 | | simprrr 781 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → (2nd
‘𝑑) ∈
ℕ) |
25 | 24 | nnzd 12139 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → (2nd
‘𝑑) ∈
ℤ) |
26 | | zmodfz 13324 |
. . . . . . . . . . 11
⊢
(((2nd ‘𝑑) ∈ ℤ ∧ (abs‘𝑎) ∈ ℕ) →
((2nd ‘𝑑)
mod (abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1))) |
27 | 25, 21, 26 | syl2anc 587 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → ((2nd
‘𝑑) mod
(abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1))) |
28 | 23, 27 | jca 515 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 ∈ (V × V) ∧ ((1st
‘𝑑) ∈ ℕ
∧ (2nd ‘𝑑) ∈ ℕ))) → (((1st
‘𝑑) mod
(abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1)) ∧ ((2nd ‘𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))) |
29 | 28 | ex 416 |
. . . . . . . 8
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ ((𝑑 ∈ (V
× V) ∧ ((1st ‘𝑑) ∈ ℕ ∧ (2nd
‘𝑑) ∈ ℕ))
→ (((1st ‘𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)) ∧ ((2nd
‘𝑑) mod
(abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1))))) |
30 | | elxp7 7735 |
. . . . . . . 8
⊢ (𝑑 ∈ (ℕ ×
ℕ) ↔ (𝑑 ∈
(V × V) ∧ ((1st ‘𝑑) ∈ ℕ ∧ (2nd
‘𝑑) ∈
ℕ))) |
31 | | opelxp 5565 |
. . . . . . . 8
⊢
(〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd ‘𝑑) mod (abs‘𝑎))〉 ∈
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))) ↔ (((1st
‘𝑑) mod
(abs‘𝑎)) ∈
(0...((abs‘𝑎) −
1)) ∧ ((2nd ‘𝑑) mod (abs‘𝑎)) ∈ (0...((abs‘𝑎) − 1)))) |
32 | 29, 30, 31 | 3imtr4g 299 |
. . . . . . 7
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ (𝑑 ∈ (ℕ
× ℕ) → 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd ‘𝑑) mod (abs‘𝑎))〉 ∈
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))))) |
33 | 15, 32 | syl5 34 |
. . . . . 6
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ (𝑑 ∈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 ∈
((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1))))) |
34 | 33 | imp 410 |
. . . . 5
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → 〈((1st
‘𝑑) mod
(abs‘𝑎)),
((2nd ‘𝑑)
mod (abs‘𝑎))〉
∈ ((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1)))) |
35 | 34 | adantlrr 720 |
. . . 4
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) ∧ 𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → 〈((1st
‘𝑑) mod
(abs‘𝑎)),
((2nd ‘𝑑)
mod (abs‘𝑎))〉
∈ ((0...((abs‘𝑎)
− 1)) × (0...((abs‘𝑎) − 1)))) |
36 | | fveq2 6664 |
. . . . . 6
⊢ (𝑑 = 𝑒 → (1st ‘𝑑) = (1st ‘𝑒)) |
37 | 36 | oveq1d 7172 |
. . . . 5
⊢ (𝑑 = 𝑒 → ((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎))) |
38 | | fveq2 6664 |
. . . . . 6
⊢ (𝑑 = 𝑒 → (2nd ‘𝑑) = (2nd ‘𝑒)) |
39 | 38 | oveq1d 7172 |
. . . . 5
⊢ (𝑑 = 𝑒 → ((2nd ‘𝑑) mod (abs‘𝑎)) = ((2nd
‘𝑒) mod
(abs‘𝑎))) |
40 | 37, 39 | opeq12d 4775 |
. . . 4
⊢ (𝑑 = 𝑒 → 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) |
41 | 13, 35, 40 | fphpd 40176 |
. . 3
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ (𝑎 ≠ 0
∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ∃𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) |
42 | | eleq1w 2835 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑓 → (𝑏 ∈ ℕ ↔ 𝑓 ∈ ℕ)) |
43 | | eleq1w 2835 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑔 → (𝑐 ∈ ℕ ↔ 𝑔 ∈ ℕ)) |
44 | 42, 43 | bi2anan9 638 |
. . . . . . . . . . 11
⊢ ((𝑏 = 𝑓 ∧ 𝑐 = 𝑔) → ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ↔ (𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ))) |
45 | | oveq1 7164 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑓 → (𝑏↑2) = (𝑓↑2)) |
46 | | oveq1 7164 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑔 → (𝑐↑2) = (𝑔↑2)) |
47 | 46 | oveq2d 7173 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑔 → (𝐷 · (𝑐↑2)) = (𝐷 · (𝑔↑2))) |
48 | 45, 47 | oveqan12d 7176 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑓 ∧ 𝑐 = 𝑔) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = ((𝑓↑2) − (𝐷 · (𝑔↑2)))) |
49 | 48 | eqeq1d 2761 |
. . . . . . . . . . 11
⊢ ((𝑏 = 𝑓 ∧ 𝑐 = 𝑔) → (((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎 ↔ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) |
50 | 44, 49 | anbi12d 633 |
. . . . . . . . . 10
⊢ ((𝑏 = 𝑓 ∧ 𝑐 = 𝑔) → (((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎) ↔ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎))) |
51 | 50 | cbvopabv 5109 |
. . . . . . . . 9
⊢
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} |
52 | 51 | eleq2i 2844 |
. . . . . . . 8
⊢ (𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ↔ 𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}) |
53 | 52 | biimpi 219 |
. . . . . . 7
⊢ (𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → 𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}) |
54 | | elopab 5389 |
. . . . . . . . 9
⊢ (𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ↔ ∃𝑏∃𝑐(𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) |
55 | | elopab 5389 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} ↔ ∃𝑓∃𝑔(𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎))) |
56 | | simp3ll 1242 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → 𝑏 ∈ ℕ) |
57 | 56 | 3expb 1118 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝑏 ∈ ℕ) |
58 | 57 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑏 ∈
ℕ) |
59 | | simp3lr 1243 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → 𝑐 ∈ ℕ) |
60 | 59 | 3expb 1118 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝑐 ∈ ℕ) |
61 | 60 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑐 ∈
ℕ) |
62 | | simp1lr 1235 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑎 ∈
ℤ) |
63 | 62 | 3adant1r 1175 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑎 ∈
ℤ) |
64 | | simp-4l 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → 𝐷 ∈ ℕ) |
65 | 64 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝐷 ∈
ℕ) |
66 | | simp-4r 783 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → ¬ (√‘𝐷) ∈
ℚ) |
67 | 66 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ¬
(√‘𝐷) ∈
ℚ) |
68 | | simp2ll 1238 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑓 ∈
ℕ) |
69 | 68 | 3adant2l 1176 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑓 ∈
ℕ) |
70 | | simp2lr 1239 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑔 ∈
ℕ) |
71 | 70 | 3adant2l 1176 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑔 ∈
ℕ) |
72 | | simp2l 1197 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑒 = 〈𝑓, 𝑔〉) |
73 | | simp1rl 1236 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑑 = 〈𝑏, 𝑐〉) |
74 | | simp3l 1199 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑑 ≠ 𝑒) |
75 | | simp3 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 〈𝑓, 𝑔〉 ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑑 ≠ 𝑒) → 𝑑 ≠ 𝑒) |
76 | | simp2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 〈𝑓, 𝑔〉 ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑑 ≠ 𝑒) → 𝑑 = 〈𝑏, 𝑐〉) |
77 | | simp1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 = 〈𝑓, 𝑔〉 ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑑 ≠ 𝑒) → 𝑒 = 〈𝑓, 𝑔〉) |
78 | 75, 76, 77 | 3netr3d 3028 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 = 〈𝑓, 𝑔〉 ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑑 ≠ 𝑒) → 〈𝑏, 𝑐〉 ≠ 〈𝑓, 𝑔〉) |
79 | | vex 3414 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑏 ∈ V |
80 | | vex 3414 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑐 ∈ V |
81 | 79, 80 | opth 5341 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑏, 𝑐〉 = 〈𝑓, 𝑔〉 ↔ (𝑏 = 𝑓 ∧ 𝑐 = 𝑔)) |
82 | 81 | necon3abii 2998 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑏, 𝑐〉 ≠ 〈𝑓, 𝑔〉 ↔ ¬ (𝑏 = 𝑓 ∧ 𝑐 = 𝑔)) |
83 | 78, 82 | sylib 221 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 = 〈𝑓, 𝑔〉 ∧ 𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑑 ≠ 𝑒) → ¬ (𝑏 = 𝑓 ∧ 𝑐 = 𝑔)) |
84 | 72, 73, 74, 83 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ¬ (𝑏 = 𝑓 ∧ 𝑐 = 𝑔)) |
85 | | simp1lr 1235 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → 𝑎 ≠ 0) |
86 | | simp1rr 1237 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎) |
87 | 86 | 3adant1l 1174 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎) |
88 | | simp2rr 1241 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎) |
89 | | simp3r 1200 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) →
〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd ‘𝑑) mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) |
90 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉 ∧ 〈((1st
‘𝑑) mod
(abs‘𝑎)),
((2nd ‘𝑑)
mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) →
〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd ‘𝑑) mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) |
91 | | ovex 7190 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑑) mod (abs‘𝑎)) ∈ V |
92 | | ovex 7190 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑑) mod (abs‘𝑎)) ∈ V |
93 | 91, 92 | opth 5341 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd ‘𝑑) mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉 ↔
(((1st ‘𝑑)
mod (abs‘𝑎)) =
((1st ‘𝑒)
mod (abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) |
94 | 90, 93 | sylib 221 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉 ∧ 〈((1st
‘𝑑) mod
(abs‘𝑎)),
((2nd ‘𝑑)
mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) →
(((1st ‘𝑑)
mod (abs‘𝑎)) =
((1st ‘𝑒)
mod (abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) |
95 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((1st ‘𝑑)
mod (abs‘𝑎)) =
((1st ‘𝑒)
mod (abs‘𝑎))) |
96 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
𝑑 = 〈𝑏, 𝑐〉) |
97 | 96 | fveq2d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(1st ‘𝑑) =
(1st ‘〈𝑏, 𝑐〉)) |
98 | 79, 80 | op1st 7708 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1st ‘〈𝑏, 𝑐〉) = 𝑏 |
99 | 97, 98 | eqtrdi 2810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(1st ‘𝑑) =
𝑏) |
100 | 99 | oveq1d 7172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((1st ‘𝑑)
mod (abs‘𝑎)) = (𝑏 mod (abs‘𝑎))) |
101 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
𝑒 = 〈𝑓, 𝑔〉) |
102 | 101 | fveq2d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(1st ‘𝑒) =
(1st ‘〈𝑓, 𝑔〉)) |
103 | | vex 3414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑓 ∈ V |
104 | | vex 3414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑔 ∈ V |
105 | 103, 104 | op1st 7708 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1st ‘〈𝑓, 𝑔〉) = 𝑓 |
106 | 102, 105 | eqtrdi 2810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(1st ‘𝑒) =
𝑓) |
107 | 106 | oveq1d 7172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((1st ‘𝑒)
mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎))) |
108 | 95, 100, 107 | 3eqtr3d 2802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎))) |
109 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎))) |
110 | 96 | fveq2d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(2nd ‘𝑑) =
(2nd ‘〈𝑏, 𝑐〉)) |
111 | 79, 80 | op2nd 7709 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑏, 𝑐〉) = 𝑐 |
112 | 110, 111 | eqtrdi 2810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(2nd ‘𝑑) =
𝑐) |
113 | 112 | oveq1d 7172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((2nd ‘𝑑)
mod (abs‘𝑎)) = (𝑐 mod (abs‘𝑎))) |
114 | 101 | fveq2d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(2nd ‘𝑒) =
(2nd ‘〈𝑓, 𝑔〉)) |
115 | 103, 104 | op2nd 7709 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(2nd ‘〈𝑓, 𝑔〉) = 𝑔 |
116 | 114, 115 | eqtrdi 2810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(2nd ‘𝑒) =
𝑔) |
117 | 116 | oveq1d 7172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((2nd ‘𝑒)
mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))) |
118 | 109, 113,
117 | 3eqtr3d 2802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
(𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))) |
119 | 108, 118 | jca 515 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) ∧ (((1st ‘𝑑) mod (abs‘𝑎)) = ((1st
‘𝑒) mod
(abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎)))) →
((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))) |
120 | 119 | ex 416 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉) → ((((1st
‘𝑑) mod
(abs‘𝑎)) =
((1st ‘𝑒)
mod (abs‘𝑎)) ∧
((2nd ‘𝑑)
mod (abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎))) →
((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))) |
121 | 120 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉 ∧ 〈((1st
‘𝑑) mod
(abs‘𝑎)),
((2nd ‘𝑑)
mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) →
((((1st ‘𝑑) mod (abs‘𝑎)) = ((1st ‘𝑒) mod (abs‘𝑎)) ∧ ((2nd
‘𝑑) mod
(abs‘𝑎)) =
((2nd ‘𝑒)
mod (abs‘𝑎))) →
((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))))) |
122 | 94, 121 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 = 〈𝑏, 𝑐〉 ∧ 𝑒 = 〈𝑓, 𝑔〉 ∧ 〈((1st
‘𝑑) mod
(abs‘𝑎)),
((2nd ‘𝑑)
mod (abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))) |
123 | 73, 72, 89, 122 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ((𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎)) ∧ (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎)))) |
124 | 123 | simpld 498 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → (𝑏 mod (abs‘𝑎)) = (𝑓 mod (abs‘𝑎))) |
125 | 123 | simprd 499 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → (𝑐 mod (abs‘𝑎)) = (𝑔 mod (abs‘𝑎))) |
126 | 58, 61, 63, 65, 67, 69, 71, 84, 85, 87, 88, 124, 125 | pellexlem6 40194 |
. . . . . . . . . . . . . 14
⊢
((((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) ∧ (𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) ∧ (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) |
127 | 126 | 3exp 1117 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → ((𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))) |
128 | 127 | exlimdvv 1936 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → (∃𝑓∃𝑔(𝑒 = 〈𝑓, 𝑔〉 ∧ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)) → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))) |
129 | 55, 128 | syl5bi 245 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ (𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎))) → (𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))) |
130 | 129 | ex 416 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ ((𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → (𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))) |
131 | 130 | exlimdvv 1936 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ (∃𝑏∃𝑐(𝑑 = 〈𝑏, 𝑐〉 ∧ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)) → (𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))) |
132 | 54, 131 | syl5bi 245 |
. . . . . . . 8
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ (𝑑 ∈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} → (𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)} → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)))) |
133 | 132 | impd 414 |
. . . . . . 7
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ ((𝑑 ∈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ∧ 𝑒 ∈ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ ℕ ∧ 𝑔 ∈ ℕ) ∧ ((𝑓↑2) − (𝐷 · (𝑔↑2))) = 𝑎)}) → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))) |
134 | 53, 133 | sylan2i 608 |
. . . . . 6
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ ((𝑑 ∈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ∧ 𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}) → ((𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1))) |
135 | 134 | rexlimdvv 3218 |
. . . . 5
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ 𝑎 ≠ 0)
→ (∃𝑑 ∈
{〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1)) |
136 | 135 | imp 410 |
. . . 4
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ 𝑎 ≠ 0) ∧ ∃𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) |
137 | 136 | adantlrr 720 |
. . 3
⊢
(((((𝐷 ∈
ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 ≠ 0 ∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) ∧ ∃𝑑 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)}∃𝑒 ∈ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} (𝑑 ≠ 𝑒 ∧ 〈((1st ‘𝑑) mod (abs‘𝑎)), ((2nd
‘𝑑) mod
(abs‘𝑎))〉 =
〈((1st ‘𝑒) mod (abs‘𝑎)), ((2nd ‘𝑒) mod (abs‘𝑎))〉)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) |
138 | 41, 137 | mpdan 686 |
. 2
⊢ ((((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) ∧ 𝑎 ∈
ℤ) ∧ (𝑎 ≠ 0
∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) |
139 | | pellexlem5 40193 |
. 2
⊢ ((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) → ∃𝑎
∈ ℤ (𝑎 ≠ 0
∧ {〈𝑏, 𝑐〉 ∣ ((𝑏 ∈ ℕ ∧ 𝑐 ∈ ℕ) ∧ ((𝑏↑2) − (𝐷 · (𝑐↑2))) = 𝑎)} ≈ ℕ)) |
140 | 138, 139 | r19.29a 3214 |
1
⊢ ((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) → ∃𝑥
∈ ℕ ∃𝑦
∈ ℕ ((𝑥↑2)
− (𝐷 · (𝑦↑2))) = 1) |