Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-sup2 Structured version   Visualization version   GIF version

Theorem sn-sup2 40088
Description: sup2 11753 with exactly the same proof except for using sn-ltp1 40082 instead of ltp1 11637, saving ax-mulcom 10758. (Contributed by SN, 26-Jun-2024.)
Assertion
Ref Expression
sn-sup2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem sn-sup2
StepHypRef Expression
1 peano2re 10970 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
21adantr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ))
4 ssel 3880 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
5 sn-ltp1 40082 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
61ancli 552 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
7 lttr 10874 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
873expb 1122 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
96, 8sylan2 596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
105, 9sylan2i 609 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1)))
1110exp4b 434 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1)))))
1211com34 91 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))))
1312pm2.43d 53 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1))))
1413imp 410 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))
15 breq1 5042 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
165, 15syl5ibrcom 250 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1716adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1814, 17jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))
1918ex 416 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
204, 19syl6 35 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → (𝑦𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2120com23 86 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2221imp 410 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
2322a2d 29 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝐴 → (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑦𝐴𝑦 < (𝑥 + 1))))
2423ralimdv2 3089 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
2524expimpd 457 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
263, 25jcad 516 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
27 ovex 7224 . . . . . . . . . 10 (𝑥 + 1) ∈ V
28 eleq1 2818 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ))
29 breq2 5043 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧𝑦 < (𝑥 + 1)))
3029ralbidv 3108 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
3128, 30anbi12d 634 . . . . . . . . . 10 (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
3227, 31spcev 3511 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧))
3326, 32syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
3433exlimdv 1941 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
35 eleq1 2818 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ))
36 breq2 5043 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
3736ralbidv 3108 . . . . . . . . 9 (𝑧 = 𝑥 → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < 𝑥))
3835, 37anbi12d 634 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
3938cbvexvw 2047 . . . . . . 7 (∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4034, 39syl6ib 254 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
41 df-rex 3057 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
42 df-rex 3057 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4340, 41, 423imtr4g 299 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4443adantr 484 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4544imdistani 572 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
46 df-3an 1091 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
47 df-3an 1091 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4845, 46, 473imtr4i 295 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
49 axsup 10873 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5048, 49syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wral 3051  wrex 3052  wss 3853  c0 4223   class class class wbr 5039  (class class class)co 7191  cr 10693  1c1 10695   + caddc 10697   < clt 10832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-ltxr 10837  df-2 11858  df-3 11859  df-resub 39998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator