Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-sup2 Structured version   Visualization version   GIF version

Theorem sn-sup2 42481
Description: sup2 12203 with exactly the same proof except for using sn-ltp1 42474 instead of ltp1 12086, saving ax-mulcom 11198. (Contributed by SN, 26-Jun-2024.)
Assertion
Ref Expression
sn-sup2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem sn-sup2
StepHypRef Expression
1 peano2re 11413 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
21adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ))
4 ssel 3957 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
5 sn-ltp1 42474 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
61ancli 548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
7 lttr 11316 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
873expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
96, 8sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1)))
105, 9sylan2i 606 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1)))
1110exp4b 430 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1)))))
1211com34 91 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))))
1312pm2.43d 53 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥𝑦 < (𝑥 + 1))))
1413imp 406 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦 < (𝑥 + 1)))
15 breq1 5127 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
165, 15syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1716adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥𝑦 < (𝑥 + 1)))
1814, 17jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))
1918ex 412 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
204, 19syl6 35 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → (𝑦𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2120com23 86 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))))
2221imp 406 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝐴 → ((𝑦 < 𝑥𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))
2322a2d 29 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝐴 → (𝑦 < 𝑥𝑦 = 𝑥)) → (𝑦𝐴𝑦 < (𝑥 + 1))))
2423ralimdv2 3150 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
2524expimpd 453 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
263, 25jcad 512 . . . . . . . . 9 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
27 ovex 7443 . . . . . . . . . 10 (𝑥 + 1) ∈ V
28 eleq1 2823 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ))
29 breq2 5128 . . . . . . . . . . . 12 (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧𝑦 < (𝑥 + 1)))
3029ralbidv 3164 . . . . . . . . . . 11 (𝑧 = (𝑥 + 1) → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < (𝑥 + 1)))
3128, 30anbi12d 632 . . . . . . . . . 10 (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1))))
3227, 31spcev 3590 . . . . . . . . 9 (((𝑥 + 1) ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧))
3326, 32syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
3433exlimdv 1933 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧)))
35 eleq1 2823 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ))
36 breq2 5128 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑦 < 𝑧𝑦 < 𝑥))
3736ralbidv 3164 . . . . . . . . 9 (𝑧 = 𝑥 → (∀𝑦𝐴 𝑦 < 𝑧 ↔ ∀𝑦𝐴 𝑦 < 𝑥))
3835, 37anbi12d 632 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
3938cbvexvw 2037 . . . . . . 7 (∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4034, 39imbitrdi 251 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)))
41 df-rex 3062 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
42 df-rex 3062 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥))
4340, 41, 423imtr4g 296 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4443adantr 480 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4544imdistani 568 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
46 df-3an 1088 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)))
47 df-3an 1088 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
4845, 46, 473imtr4i 292 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥))
49 axsup 11315 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5048, 49syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  (class class class)co 7410  cr 11133  1c1 11135   + caddc 11137   < clt 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-2 12308  df-3 12309  df-resub 42376
This theorem is referenced by:  sn-sup3d  42482
  Copyright terms: Public domain W3C validator