Proof of Theorem sn-sup2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | peano2re 11435 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) | 
| 2 | 1 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ) | 
| 3 | 2 | a1i 11 | . . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)) | 
| 4 |  | ssel 3976 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) | 
| 5 |  | sn-ltp1 42499 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1)) | 
| 6 | 1 | ancli 548 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈
ℝ)) | 
| 7 |  | lttr 11338 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) →
((𝑦 < 𝑥 ∧ 𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1))) | 
| 8 | 7 | 3expb 1120 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) →
((𝑦 < 𝑥 ∧ 𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1))) | 
| 9 | 6, 8 | sylan2 593 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ 𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1))) | 
| 10 | 5, 9 | sylan2i 606 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ 𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1))) | 
| 11 | 10 | exp4b 430 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1))))) | 
| 12 | 11 | com34 91 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → 𝑦 < (𝑥 + 1))))) | 
| 13 | 12 | pm2.43d 53 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → 𝑦 < (𝑥 + 1)))) | 
| 14 | 13 | imp 406 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 → 𝑦 < (𝑥 + 1))) | 
| 15 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1))) | 
| 16 | 5, 15 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ → (𝑦 = 𝑥 → 𝑦 < (𝑥 + 1))) | 
| 17 | 16 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥 → 𝑦 < (𝑥 + 1))) | 
| 18 | 14, 17 | jaod 859 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))) | 
| 19 | 18 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))) | 
| 20 | 4, 19 | syl6 35 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))) | 
| 21 | 20 | com23 86 | . . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦 ∈ 𝐴 → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))) | 
| 22 | 21 | imp 406 | . . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ 𝐴 → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))) | 
| 23 | 22 | a2d 29 | . . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ 𝐴 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝑦 ∈ 𝐴 → 𝑦 < (𝑥 + 1)))) | 
| 24 | 23 | ralimdv2 3162 | . . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1))) | 
| 25 | 24 | expimpd 453 | . . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1))) | 
| 26 | 3, 25 | jcad 512 | . . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1)))) | 
| 27 |  | ovex 7465 | . . . . . . . . . 10
⊢ (𝑥 + 1) ∈ V | 
| 28 |  | eleq1 2828 | . . . . . . . . . . 11
⊢ (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ)) | 
| 29 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧 ↔ 𝑦 < (𝑥 + 1))) | 
| 30 | 29 | ralbidv 3177 | . . . . . . . . . . 11
⊢ (𝑧 = (𝑥 + 1) → (∀𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1))) | 
| 31 | 28, 30 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1)))) | 
| 32 | 27, 31 | spcev 3605 | . . . . . . . . 9
⊢ (((𝑥 + 1) ∈ ℝ ∧
∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧)) | 
| 33 | 26, 32 | syl6 35 | . . . . . . . 8
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧))) | 
| 34 | 33 | exlimdv 1932 | . . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∃𝑥(𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧))) | 
| 35 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ)) | 
| 36 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑥)) | 
| 37 | 36 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 38 | 35, 37 | anbi12d 632 | . . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥))) | 
| 39 | 38 | cbvexvw 2035 | . . . . . . 7
⊢
(∃𝑧(𝑧 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 40 | 34, 39 | imbitrdi 251 | . . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑥(𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥))) | 
| 41 |  | df-rex 3070 | . . . . . 6
⊢
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) | 
| 42 |  | df-rex 3070 | . . . . . 6
⊢
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 43 | 40, 41, 42 | 3imtr4g 296 | . . . . 5
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 44 | 43 | adantr 480 | . . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 45 | 44 | imdistani 568 | . . 3
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 46 |  | df-3an 1088 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) | 
| 47 |  | df-3an 1088 | . . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 48 | 45, 46, 47 | 3imtr4i 292 | . 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) | 
| 49 |  | axsup 11337 | . 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | 
| 50 | 48, 49 | syl 17 | 1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |