Proof of Theorem sn-sup2
| Step | Hyp | Ref
| Expression |
| 1 | | peano2re 11413 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
| 2 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ) |
| 3 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝑥 + 1) ∈ ℝ)) |
| 4 | | ssel 3957 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
| 5 | | sn-ltp1 42474 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1)) |
| 6 | 1 | ancli 548 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈
ℝ)) |
| 7 | | lttr 11316 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) →
((𝑦 < 𝑥 ∧ 𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1))) |
| 8 | 7 | 3expb 1120 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ)) →
((𝑦 < 𝑥 ∧ 𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1))) |
| 9 | 6, 8 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ 𝑥 < (𝑥 + 1)) → 𝑦 < (𝑥 + 1))) |
| 10 | 5, 9 | sylan2i 606 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ 𝑥 ∈ ℝ) → 𝑦 < (𝑥 + 1))) |
| 11 | 10 | exp4b 430 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → (𝑥 ∈ ℝ → 𝑦 < (𝑥 + 1))))) |
| 12 | 11 | com34 91 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → 𝑦 < (𝑥 + 1))))) |
| 13 | 12 | pm2.43d 53 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → (𝑦 < 𝑥 → 𝑦 < (𝑥 + 1)))) |
| 14 | 13 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 → 𝑦 < (𝑥 + 1))) |
| 15 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (𝑦 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1))) |
| 16 | 5, 15 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ → (𝑦 = 𝑥 → 𝑦 < (𝑥 + 1))) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 = 𝑥 → 𝑦 < (𝑥 + 1))) |
| 18 | 14, 17 | jaod 859 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))) |
| 19 | 18 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))) |
| 20 | 4, 19 | syl6 35 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → (𝑥 ∈ ℝ → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))) |
| 21 | 20 | com23 86 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ ℝ → (𝑦 ∈ 𝐴 → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1))))) |
| 22 | 21 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 ∈ 𝐴 → ((𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → 𝑦 < (𝑥 + 1)))) |
| 23 | 22 | a2d 29 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ 𝐴 → (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝑦 ∈ 𝐴 → 𝑦 < (𝑥 + 1)))) |
| 24 | 23 | ralimdv2 3150 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1))) |
| 25 | 24 | expimpd 453 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1))) |
| 26 | 3, 25 | jcad 512 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1)))) |
| 27 | | ovex 7443 |
. . . . . . . . . 10
⊢ (𝑥 + 1) ∈ V |
| 28 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥 + 1) → (𝑧 ∈ ℝ ↔ (𝑥 + 1) ∈ ℝ)) |
| 29 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 + 1) → (𝑦 < 𝑧 ↔ 𝑦 < (𝑥 + 1))) |
| 30 | 29 | ralbidv 3164 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥 + 1) → (∀𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1))) |
| 31 | 28, 30 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 + 1) → ((𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧) ↔ ((𝑥 + 1) ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1)))) |
| 32 | 27, 31 | spcev 3590 |
. . . . . . . . 9
⊢ (((𝑥 + 1) ∈ ℝ ∧
∀𝑦 ∈ 𝐴 𝑦 < (𝑥 + 1)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧)) |
| 33 | 26, 32 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → ((𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧))) |
| 34 | 33 | exlimdv 1933 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∃𝑥(𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑧(𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧))) |
| 35 | | eleq1 2823 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ)) |
| 36 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑥)) |
| 37 | 36 | ralbidv 3164 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 38 | 35, 37 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑧) ↔ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥))) |
| 39 | 38 | cbvexvw 2037 |
. . . . . . 7
⊢
(∃𝑧(𝑧 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 𝑦 < 𝑧) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 40 | 34, 39 | imbitrdi 251 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑥(𝑥 ∈ ℝ ∧
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥))) |
| 41 | | df-rex 3062 |
. . . . . 6
⊢
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 42 | | df-rex 3062 |
. . . . . 6
⊢
(∃𝑥 ∈
ℝ ∀𝑦 ∈
𝐴 𝑦 < 𝑥 ↔ ∃𝑥(𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 43 | 40, 41, 42 | 3imtr4g 296 |
. . . . 5
⊢ (𝐴 ⊆ ℝ →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 44 | 43 | adantr 480 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 45 | 44 | imdistani 568 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 46 | | df-3an 1088 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 47 | | df-3an 1088 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥) ↔ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 48 | 45, 46, 47 | 3imtr4i 292 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥)) |
| 49 | | axsup 11315 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 50 | 48, 49 | syl 17 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |