MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem7 Structured version   Visualization version   GIF version

Theorem ltexprlem7 10462
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem7 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem7
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . . . 8 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 10460 . . . . . . 7 ((𝐵P𝐴𝐵) → 𝐶P)
3 ltaddpr 10454 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → 𝐴<P (𝐴 +P 𝐶))
4 addclpr 10438 . . . . . . . . . . . . . . 15 ((𝐴P𝐶P) → (𝐴 +P 𝐶) ∈ P)
5 ltprord 10450 . . . . . . . . . . . . . . 15 ((𝐴P ∧ (𝐴 +P 𝐶) ∈ P) → (𝐴<P (𝐴 +P 𝐶) ↔ 𝐴 ⊊ (𝐴 +P 𝐶)))
64, 5syldan 594 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴<P (𝐴 +P 𝐶) ↔ 𝐴 ⊊ (𝐴 +P 𝐶)))
73, 6mpbid 235 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → 𝐴 ⊊ (𝐴 +P 𝐶))
87pssssd 4060 . . . . . . . . . . . 12 ((𝐴P𝐶P) → 𝐴 ⊆ (𝐴 +P 𝐶))
98sseld 3952 . . . . . . . . . . 11 ((𝐴P𝐶P) → (𝑤𝐴𝑤 ∈ (𝐴 +P 𝐶)))
1092a1d 26 . . . . . . . . . 10 ((𝐴P𝐶P) → (𝐵P → (𝑤𝐵 → (𝑤𝐴𝑤 ∈ (𝐴 +P 𝐶)))))
1110com4r 94 . . . . . . . . 9 (𝑤𝐴 → ((𝐴P𝐶P) → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
1211expd 419 . . . . . . . 8 (𝑤𝐴 → (𝐴P → (𝐶P → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
13 prnmadd 10417 . . . . . . . . . . . 12 ((𝐵P𝑤𝐵) → ∃𝑣(𝑤 +Q 𝑣) ∈ 𝐵)
1413ex 416 . . . . . . . . . . 11 (𝐵P → (𝑤𝐵 → ∃𝑣(𝑤 +Q 𝑣) ∈ 𝐵))
15 elprnq 10411 . . . . . . . . . . . . . . . 16 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑤 +Q 𝑣) ∈ Q)
16 addnqf 10368 . . . . . . . . . . . . . . . . . 18 +Q :(Q × Q)⟶Q
1716fdmi 6514 . . . . . . . . . . . . . . . . 17 dom +Q = (Q × Q)
18 0nnq 10344 . . . . . . . . . . . . . . . . 17 ¬ ∅ ∈ Q
1917, 18ndmovrcl 7328 . . . . . . . . . . . . . . . 16 ((𝑤 +Q 𝑣) ∈ Q → (𝑤Q𝑣Q))
2015, 19syl 17 . . . . . . . . . . . . . . 15 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑤Q𝑣Q))
2120simpld 498 . . . . . . . . . . . . . 14 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → 𝑤Q)
22 vex 3483 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
2322prlem934 10453 . . . . . . . . . . . . . . . . . 18 (𝐴P → ∃𝑧𝐴 ¬ (𝑧 +Q 𝑣) ∈ 𝐴)
2423adantr 484 . . . . . . . . . . . . . . . . 17 ((𝐴P𝐶P) → ∃𝑧𝐴 ¬ (𝑧 +Q 𝑣) ∈ 𝐴)
25 prub 10414 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴P𝑧𝐴) ∧ 𝑤Q) → (¬ 𝑤𝐴𝑧 <Q 𝑤))
26 ltexnq 10395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤Q → (𝑧 <Q 𝑤 ↔ ∃𝑥(𝑧 +Q 𝑥) = 𝑤))
2726adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴P𝑧𝐴) ∧ 𝑤Q) → (𝑧 <Q 𝑤 ↔ ∃𝑥(𝑧 +Q 𝑥) = 𝑤))
2825, 27sylibd 242 . . . . . . . . . . . . . . . . . . . 20 (((𝐴P𝑧𝐴) ∧ 𝑤Q) → (¬ 𝑤𝐴 → ∃𝑥(𝑧 +Q 𝑥) = 𝑤))
2928ex 416 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧𝐴) → (𝑤Q → (¬ 𝑤𝐴 → ∃𝑥(𝑧 +Q 𝑥) = 𝑤)))
3029ad2ant2r 746 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → (𝑤Q → (¬ 𝑤𝐴 → ∃𝑥(𝑧 +Q 𝑥) = 𝑤)))
31 vex 3483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 ∈ V
32 vex 3483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑥 ∈ V
33 addcomnq 10371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)
34 addassnq 10378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q ))
3531, 22, 32, 33, 34caov32 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 +Q 𝑣) +Q 𝑥) = ((𝑧 +Q 𝑥) +Q 𝑣)
36 oveq1 7156 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 +Q 𝑥) = 𝑤 → ((𝑧 +Q 𝑥) +Q 𝑣) = (𝑤 +Q 𝑣))
3735, 36syl5eq 2871 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 +Q 𝑥) = 𝑤 → ((𝑧 +Q 𝑣) +Q 𝑥) = (𝑤 +Q 𝑣))
3837eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 +Q 𝑥) = 𝑤 → (((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵 ↔ (𝑤 +Q 𝑣) ∈ 𝐵))
3938biimpar 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵)
40 ovex 7182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 +Q 𝑣) ∈ V
41 eleq1 2903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑧 +Q 𝑣) → (𝑦𝐴 ↔ (𝑧 +Q 𝑣) ∈ 𝐴))
4241notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑧 +Q 𝑣) → (¬ 𝑦𝐴 ↔ ¬ (𝑧 +Q 𝑣) ∈ 𝐴))
43 oveq1 7156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑧 +Q 𝑣) → (𝑦 +Q 𝑥) = ((𝑧 +Q 𝑣) +Q 𝑥))
4443eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵))
4542, 44anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = (𝑧 +Q 𝑣) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵)))
4640, 45spcev 3593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
471abeq2i 2951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
4846, 47sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵) → 𝑥𝐶)
4939, 48sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → 𝑥𝐶)
50 df-plp 10403 . . . . . . . . . . . . . . . . . . . . . . . . 25 +P = (𝑥P, 𝑤P ↦ {𝑧 ∣ ∃𝑓𝑥𝑣𝑤 𝑧 = (𝑓 +Q 𝑣)})
51 addclnq 10365 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓Q𝑣Q) → (𝑓 +Q 𝑣) ∈ Q)
5250, 51genpprecl 10421 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴P𝐶P) → ((𝑧𝐴𝑥𝐶) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶)))
5349, 52sylan2i 608 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴P𝐶P) → ((𝑧𝐴 ∧ (¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵))) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶)))
5453exp4d 437 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴P𝐶P) → (𝑧𝐴 → (¬ (𝑧 +Q 𝑣) ∈ 𝐴 → (((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶)))))
5554imp42 430 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶))
56 eleq1 2903 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 +Q 𝑥) = 𝑤 → ((𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶) ↔ 𝑤 ∈ (𝐴 +P 𝐶)))
5756ad2antrl 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → ((𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶) ↔ 𝑤 ∈ (𝐴 +P 𝐶)))
5855, 57mpbid 235 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → 𝑤 ∈ (𝐴 +P 𝐶))
5958exp32 424 . . . . . . . . . . . . . . . . . . 19 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → ((𝑧 +Q 𝑥) = 𝑤 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶))))
6059exlimdv 1935 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → (∃𝑥(𝑧 +Q 𝑥) = 𝑤 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶))))
6130, 60syl6d 75 . . . . . . . . . . . . . . . . 17 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → (𝑤Q → (¬ 𝑤𝐴 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
6224, 61rexlimddv 3283 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → (𝑤Q → (¬ 𝑤𝐴 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
6362com14 96 . . . . . . . . . . . . . . 15 ((𝑤 +Q 𝑣) ∈ 𝐵 → (𝑤Q → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6463adantl 485 . . . . . . . . . . . . . 14 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑤Q → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6521, 64mpd 15 . . . . . . . . . . . . 13 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶))))
6665ex 416 . . . . . . . . . . . 12 (𝐵P → ((𝑤 +Q 𝑣) ∈ 𝐵 → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6766exlimdv 1935 . . . . . . . . . . 11 (𝐵P → (∃𝑣(𝑤 +Q 𝑣) ∈ 𝐵 → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6814, 67syld 47 . . . . . . . . . 10 (𝐵P → (𝑤𝐵 → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6968com4t 93 . . . . . . . . 9 𝑤𝐴 → ((𝐴P𝐶P) → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
7069expd 419 . . . . . . . 8 𝑤𝐴 → (𝐴P → (𝐶P → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
7112, 70pm2.61i 185 . . . . . . 7 (𝐴P → (𝐶P → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
722, 71syl5 34 . . . . . 6 (𝐴P → ((𝐵P𝐴𝐵) → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
7372expd 419 . . . . 5 (𝐴P → (𝐵P → (𝐴𝐵 → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
7473com34 91 . . . 4 (𝐴P → (𝐵P → (𝐵P → (𝐴𝐵 → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
7574pm2.43d 53 . . 3 (𝐴P → (𝐵P → (𝐴𝐵 → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
7675imp31 421 . 2 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))
7776ssrdv 3959 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  {cab 2802  wrex 3134  wss 3919  wpss 3920   class class class wbr 5052   × cxp 5540  (class class class)co 7149  Qcnq 10272   +Q cplq 10275   <Q cltq 10278  Pcnp 10279   +P cpp 10281  <P cltp 10283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-omul 8103  df-er 8285  df-ni 10292  df-pli 10293  df-mi 10294  df-lti 10295  df-plpq 10328  df-mpq 10329  df-ltpq 10330  df-enq 10331  df-nq 10332  df-erq 10333  df-plq 10334  df-mq 10335  df-1nq 10336  df-rq 10337  df-ltnq 10338  df-np 10401  df-plp 10403  df-ltp 10405
This theorem is referenced by:  ltexpri  10463
  Copyright terms: Public domain W3C validator