MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem7 Structured version   Visualization version   GIF version

Theorem ltexprlem7 11080
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem7 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem7
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . . . 8 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 11078 . . . . . . 7 ((𝐵P𝐴𝐵) → 𝐶P)
3 ltaddpr 11072 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → 𝐴<P (𝐴 +P 𝐶))
4 addclpr 11056 . . . . . . . . . . . . . . 15 ((𝐴P𝐶P) → (𝐴 +P 𝐶) ∈ P)
5 ltprord 11068 . . . . . . . . . . . . . . 15 ((𝐴P ∧ (𝐴 +P 𝐶) ∈ P) → (𝐴<P (𝐴 +P 𝐶) ↔ 𝐴 ⊊ (𝐴 +P 𝐶)))
64, 5syldan 591 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴<P (𝐴 +P 𝐶) ↔ 𝐴 ⊊ (𝐴 +P 𝐶)))
73, 6mpbid 232 . . . . . . . . . . . . 13 ((𝐴P𝐶P) → 𝐴 ⊊ (𝐴 +P 𝐶))
87pssssd 4110 . . . . . . . . . . . 12 ((𝐴P𝐶P) → 𝐴 ⊆ (𝐴 +P 𝐶))
98sseld 3994 . . . . . . . . . . 11 ((𝐴P𝐶P) → (𝑤𝐴𝑤 ∈ (𝐴 +P 𝐶)))
1092a1d 26 . . . . . . . . . 10 ((𝐴P𝐶P) → (𝐵P → (𝑤𝐵 → (𝑤𝐴𝑤 ∈ (𝐴 +P 𝐶)))))
1110com4r 94 . . . . . . . . 9 (𝑤𝐴 → ((𝐴P𝐶P) → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
1211expd 415 . . . . . . . 8 (𝑤𝐴 → (𝐴P → (𝐶P → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
13 prnmadd 11035 . . . . . . . . . . . 12 ((𝐵P𝑤𝐵) → ∃𝑣(𝑤 +Q 𝑣) ∈ 𝐵)
1413ex 412 . . . . . . . . . . 11 (𝐵P → (𝑤𝐵 → ∃𝑣(𝑤 +Q 𝑣) ∈ 𝐵))
15 elprnq 11029 . . . . . . . . . . . . . . . 16 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑤 +Q 𝑣) ∈ Q)
16 addnqf 10986 . . . . . . . . . . . . . . . . . 18 +Q :(Q × Q)⟶Q
1716fdmi 6748 . . . . . . . . . . . . . . . . 17 dom +Q = (Q × Q)
18 0nnq 10962 . . . . . . . . . . . . . . . . 17 ¬ ∅ ∈ Q
1917, 18ndmovrcl 7619 . . . . . . . . . . . . . . . 16 ((𝑤 +Q 𝑣) ∈ Q → (𝑤Q𝑣Q))
2015, 19syl 17 . . . . . . . . . . . . . . 15 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑤Q𝑣Q))
2120simpld 494 . . . . . . . . . . . . . 14 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → 𝑤Q)
22 vex 3482 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
2322prlem934 11071 . . . . . . . . . . . . . . . . . 18 (𝐴P → ∃𝑧𝐴 ¬ (𝑧 +Q 𝑣) ∈ 𝐴)
2423adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴P𝐶P) → ∃𝑧𝐴 ¬ (𝑧 +Q 𝑣) ∈ 𝐴)
25 prub 11032 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴P𝑧𝐴) ∧ 𝑤Q) → (¬ 𝑤𝐴𝑧 <Q 𝑤))
26 ltexnq 11013 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤Q → (𝑧 <Q 𝑤 ↔ ∃𝑥(𝑧 +Q 𝑥) = 𝑤))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴P𝑧𝐴) ∧ 𝑤Q) → (𝑧 <Q 𝑤 ↔ ∃𝑥(𝑧 +Q 𝑥) = 𝑤))
2825, 27sylibd 239 . . . . . . . . . . . . . . . . . . . 20 (((𝐴P𝑧𝐴) ∧ 𝑤Q) → (¬ 𝑤𝐴 → ∃𝑥(𝑧 +Q 𝑥) = 𝑤))
2928ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑧𝐴) → (𝑤Q → (¬ 𝑤𝐴 → ∃𝑥(𝑧 +Q 𝑥) = 𝑤)))
3029ad2ant2r 747 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → (𝑤Q → (¬ 𝑤𝐴 → ∃𝑥(𝑧 +Q 𝑥) = 𝑤)))
31 vex 3482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑧 ∈ V
32 vex 3482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑥 ∈ V
33 addcomnq 10989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)
34 addassnq 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q ))
3531, 22, 32, 33, 34caov32 7660 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 +Q 𝑣) +Q 𝑥) = ((𝑧 +Q 𝑥) +Q 𝑣)
36 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 +Q 𝑥) = 𝑤 → ((𝑧 +Q 𝑥) +Q 𝑣) = (𝑤 +Q 𝑣))
3735, 36eqtrid 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 +Q 𝑥) = 𝑤 → ((𝑧 +Q 𝑣) +Q 𝑥) = (𝑤 +Q 𝑣))
3837eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 +Q 𝑥) = 𝑤 → (((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵 ↔ (𝑤 +Q 𝑣) ∈ 𝐵))
3938biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵)
40 ovex 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 +Q 𝑣) ∈ V
41 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑧 +Q 𝑣) → (𝑦𝐴 ↔ (𝑧 +Q 𝑣) ∈ 𝐴))
4241notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑧 +Q 𝑣) → (¬ 𝑦𝐴 ↔ ¬ (𝑧 +Q 𝑣) ∈ 𝐴))
43 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = (𝑧 +Q 𝑣) → (𝑦 +Q 𝑥) = ((𝑧 +Q 𝑣) +Q 𝑥))
4443eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑧 +Q 𝑣) → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵))
4542, 44anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = (𝑧 +Q 𝑣) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵)))
4640, 45spcev 3606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
471eqabri 2883 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
4846, 47sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑣) +Q 𝑥) ∈ 𝐵) → 𝑥𝐶)
4939, 48sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → 𝑥𝐶)
50 df-plp 11021 . . . . . . . . . . . . . . . . . . . . . . . . 25 +P = (𝑥P, 𝑤P ↦ {𝑧 ∣ ∃𝑓𝑥𝑣𝑤 𝑧 = (𝑓 +Q 𝑣)})
51 addclnq 10983 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓Q𝑣Q) → (𝑓 +Q 𝑣) ∈ Q)
5250, 51genpprecl 11039 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴P𝐶P) → ((𝑧𝐴𝑥𝐶) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶)))
5349, 52sylan2i 606 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴P𝐶P) → ((𝑧𝐴 ∧ (¬ (𝑧 +Q 𝑣) ∈ 𝐴 ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵))) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶)))
5453exp4d 433 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴P𝐶P) → (𝑧𝐴 → (¬ (𝑧 +Q 𝑣) ∈ 𝐴 → (((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶)))))
5554imp42 426 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → (𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶))
56 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 +Q 𝑥) = 𝑤 → ((𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶) ↔ 𝑤 ∈ (𝐴 +P 𝐶)))
5756ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → ((𝑧 +Q 𝑥) ∈ (𝐴 +P 𝐶) ↔ 𝑤 ∈ (𝐴 +P 𝐶)))
5855, 57mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) ∧ ((𝑧 +Q 𝑥) = 𝑤 ∧ (𝑤 +Q 𝑣) ∈ 𝐵)) → 𝑤 ∈ (𝐴 +P 𝐶))
5958exp32 420 . . . . . . . . . . . . . . . . . . 19 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → ((𝑧 +Q 𝑥) = 𝑤 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶))))
6059exlimdv 1931 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → (∃𝑥(𝑧 +Q 𝑥) = 𝑤 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶))))
6130, 60syl6d 75 . . . . . . . . . . . . . . . . 17 (((𝐴P𝐶P) ∧ (𝑧𝐴 ∧ ¬ (𝑧 +Q 𝑣) ∈ 𝐴)) → (𝑤Q → (¬ 𝑤𝐴 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
6224, 61rexlimddv 3159 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → (𝑤Q → (¬ 𝑤𝐴 → ((𝑤 +Q 𝑣) ∈ 𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
6362com14 96 . . . . . . . . . . . . . . 15 ((𝑤 +Q 𝑣) ∈ 𝐵 → (𝑤Q → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6463adantl 481 . . . . . . . . . . . . . 14 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (𝑤Q → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6521, 64mpd 15 . . . . . . . . . . . . 13 ((𝐵P ∧ (𝑤 +Q 𝑣) ∈ 𝐵) → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶))))
6665ex 412 . . . . . . . . . . . 12 (𝐵P → ((𝑤 +Q 𝑣) ∈ 𝐵 → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6766exlimdv 1931 . . . . . . . . . . 11 (𝐵P → (∃𝑣(𝑤 +Q 𝑣) ∈ 𝐵 → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6814, 67syld 47 . . . . . . . . . 10 (𝐵P → (𝑤𝐵 → (¬ 𝑤𝐴 → ((𝐴P𝐶P) → 𝑤 ∈ (𝐴 +P 𝐶)))))
6968com4t 93 . . . . . . . . 9 𝑤𝐴 → ((𝐴P𝐶P) → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
7069expd 415 . . . . . . . 8 𝑤𝐴 → (𝐴P → (𝐶P → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
7112, 70pm2.61i 182 . . . . . . 7 (𝐴P → (𝐶P → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
722, 71syl5 34 . . . . . 6 (𝐴P → ((𝐵P𝐴𝐵) → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
7372expd 415 . . . . 5 (𝐴P → (𝐵P → (𝐴𝐵 → (𝐵P → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
7473com34 91 . . . 4 (𝐴P → (𝐵P → (𝐵P → (𝐴𝐵 → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶))))))
7574pm2.43d 53 . . 3 (𝐴P → (𝐵P → (𝐴𝐵 → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))))
7675imp31 417 . 2 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝑤𝐵𝑤 ∈ (𝐴 +P 𝐶)))
7776ssrdv 4001 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wrex 3068  wss 3963  wpss 3964   class class class wbr 5148   × cxp 5687  (class class class)co 7431  Qcnq 10890   +Q cplq 10893   <Q cltq 10896  Pcnp 10897   +P cpp 10899  <P cltp 10901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019  df-plp 11021  df-ltp 11023
This theorem is referenced by:  ltexpri  11081
  Copyright terms: Public domain W3C validator