MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odi Structured version   Visualization version   GIF version

Theorem odi 8615
Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. Theorem 4.3 of [Schloeder] p. 12. (Contributed by NM, 26-Dec-2004.)
Assertion
Ref Expression
odi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))

Proof of Theorem odi
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7446 . . . . 5 (𝑥 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o ∅)))
3 oveq2 7438 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
43oveq2d 7446 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
52, 4eqeq12d 2750 . . . 4 (𝑥 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅))))
6 oveq2 7438 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7446 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝑦)))
8 oveq2 7438 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
98oveq2d 7446 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))
107, 9eqeq12d 2750 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))))
11 oveq2 7438 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7446 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o suc 𝑦)))
13 oveq2 7438 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
1413oveq2d 7446 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))
1512, 14eqeq12d 2750 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
16 oveq2 7438 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7446 . . . . 5 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝐶)))
18 oveq2 7438 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
1918oveq2d 7446 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2017, 19eqeq12d 2750 . . . 4 (𝑥 = 𝐶 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
21 omcl 8572 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
22 oa0 8552 . . . . . 6 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
24 om0 8553 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2524adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) = ∅)
2625oveq2d 7446 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
27 oa0 8552 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2827adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
2928oveq2d 7446 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) = (𝐴 ·o 𝐵))
3023, 26, 293eqtr4rd 2785 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
31 oveq1 7437 . . . . . . . 8 ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
32 oasuc 8560 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
33323adant1 1129 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3433oveq2d 7446 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = (𝐴 ·o suc (𝐵 +o 𝑦)))
35 oacl 8571 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
36 omsuc 8562 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3735, 36sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
38373impb 1114 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3934, 38eqtrd 2774 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
40 omsuc 8562 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
41403adant2 1130 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4241oveq2d 7446 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
43 omcl 8572 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
44 oaass 8597 . . . . . . . . . . . . . . . . . 18 (((𝐴 ·o 𝐵) ∈ On ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4521, 44syl3an1 1162 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4643, 45syl3an2 1163 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
47463exp 1118 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
4847exp4b 430 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))))
4948pm2.43a 54 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5049com4r 94 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5150pm2.43i 52 . . . . . . . . . . 11 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
52513imp 1110 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
5342, 52eqtr4d 2777 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
5439, 53eqeq12d 2750 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) ↔ ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)))
5531, 54imbitrrid 246 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
56553exp 1118 . . . . . 6 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5756com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5857impd 410 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))
59 vex 3481 . . . . . . . . . . . . . 14 𝑥 ∈ V
60 limelon 6449 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6159, 60mpan 690 . . . . . . . . . . . . 13 (Lim 𝑥𝑥 ∈ On)
62 oacl 8571 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
63 om0r 8575 . . . . . . . . . . . . . . 15 ((𝐵 +o 𝑥) ∈ On → (∅ ·o (𝐵 +o 𝑥)) = ∅)
6462, 63syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ∅)
65 om0r 8575 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
66 om0r 8575 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → (∅ ·o 𝑥) = ∅)
6765, 66oveqan12d 7449 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∅ ·o 𝐵) +o (∅ ·o 𝑥)) = (∅ +o ∅))
68 0elon 6439 . . . . . . . . . . . . . . . 16 ∅ ∈ On
69 oa0 8552 . . . . . . . . . . . . . . . 16 (∅ ∈ On → (∅ +o ∅) = ∅)
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 (∅ +o ∅) = ∅
7167, 70eqtr2di 2791 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ∅ = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7264, 71eqtrd 2774 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7361, 72sylan2 593 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Lim 𝑥) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7473ancoms 458 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
75 oveq1 7437 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (∅ ·o (𝐵 +o 𝑥)))
76 oveq1 7437 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
77 oveq1 7437 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·o 𝑥) = (∅ ·o 𝑥))
7876, 77oveq12d 7448 . . . . . . . . . . . 12 (𝐴 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7975, 78eqeq12d 2750 . . . . . . . . . . 11 (𝐴 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥))))
8074, 79imbitrrid 246 . . . . . . . . . 10 (𝐴 = ∅ → ((Lim 𝑥𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
8180expd 415 . . . . . . . . 9 (𝐴 = ∅ → (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
8281com3r 87 . . . . . . . 8 (𝐵 ∈ On → (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
8382imp 406 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
8483a1dd 50 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
85 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝐵 ∈ On)
8662ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
87 onelon 6410 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
8886, 87sylan 580 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
89 ontri1 6419 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ¬ 𝑧𝐵))
90 oawordex 8593 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
9189, 90bitr3d 281 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
9285, 88, 91syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
93 oaord 8583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
94933expb 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
95 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +o 𝑣) = 𝑧 → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
9694, 95sylan9bb 509 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣𝑥𝑧 ∈ (𝐵 +o 𝑥)))
97 iba 527 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
9897adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
9996, 98bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10099an32s 652 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
101100biimpcd 249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐵 +o 𝑥) → (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
102101exp4c 432 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))))
103102com4r 94 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))))
104103imp 406 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))))
105104reximdvai 3162 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10692, 105sylbid 240 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧𝐵 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
107106orrd 863 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10861, 107sylanl1 680 . . . . . . . . . . . . . . . 16 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
109108adantlrl 720 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
110109adantlr 715 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
111 0ellim 6448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Lim 𝑥 → ∅ ∈ 𝑥)
112 om00el 8612 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝑥) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥)))
113112biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
114111, 113sylan2i 606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
11561, 114sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ Lim 𝑥) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
116115exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → (Lim 𝑥 → ∅ ∈ (𝐴 ·o 𝑥)))))
117116com4r 94 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥)))))
118117pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . 22 (Lim 𝑥 → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥))))
119118imp31 417 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ·o 𝑥))
120119a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·o 𝑥)))
121120adantlrr 721 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·o 𝑥)))
122 omordi 8602 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵)))
123122ancom1s 653 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵)))
124 onelss 6427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵)))
12522sseq2d 4027 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅) ↔ (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵)))
126124, 125sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
129123, 128syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
130129adantll 714 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
131121, 130jcad 512 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))))
132 oveq2 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ∅ → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o ∅))
133132sseq2d 4027 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ∅ → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
134133rspcev 3621 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
135131, 134syl6 35 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
136135adantrr 717 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
137 omordi 8602 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
13861, 137sylanl1 680 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
139138adantrd 491 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
140139adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
141 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐵 +o 𝑦) = (𝐵 +o 𝑣))
142141oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝐴 ·o (𝐵 +o 𝑦)) = (𝐴 ·o (𝐵 +o 𝑣)))
143 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐴 ·o 𝑦) = (𝐴 ·o 𝑣))
144143oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
145142, 144eqeq12d 2750 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ↔ (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
146145rspccv 3618 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
147 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧))
148 eqeq1 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧)))
149147, 148imbitrid 244 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧)))
150 eqimss2 4054 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
151149, 150syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
152151imim2i 16 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → (𝑣𝑥 → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))))
153152impd 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
154146, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
155154ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
156140, 155jcad 512 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))))
157 oveq2 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
158157sseq2d 4027 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
159158rspcev 3621 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
161160rexlimdvw 3157 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
162161adantlrr 721 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
163136, 162jaod 859 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
164163adantr 480 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
165110, 164mpd 15 . . . . . . . . . . . . 13 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
166165ralrimiva 3143 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
167 iunss2 5053 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
168166, 167syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
169 omordlim 8613 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
170169ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
17159, 170mpanr1 703 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
172171ancoms 458 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
173172imp 406 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
174173adantlrr 721 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
175174adantlr 715 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
176 oaordi 8582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
17761, 176sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
178177imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑣𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))
179178adantlrl 720 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))
180179a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
181180adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
182 limord 6445 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
183 ordelon 6409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑥𝑣𝑥) → 𝑣 ∈ On)
184182, 183sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝑣𝑥) → 𝑣 ∈ On)
185 omcl 8572 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑣 ∈ On) → (𝐴 ·o 𝑣) ∈ On)
186185ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑣) ∈ On)
187186adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝑣) ∈ On)
18821adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝐵) ∈ On)
189 oaordi 8582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·o 𝑣) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
190187, 188, 189syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
191184, 190sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
192191an32s 652 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
193192adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
194145rspccva 3620 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
195194eleq2d 2824 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
196195adantll 714 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
197193, 196sylibrd 259 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣))))
198 oacl 8571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑣 ∈ On) → (𝐵 +o 𝑣) ∈ On)
199198ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑣) ∈ On)
200 omcl 8572 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ (𝐵 +o 𝑣) ∈ On) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
201199, 200sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ (𝑣 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
202201an12s 649 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
203184, 202sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
204203an32s 652 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
205 onelss 6427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·o (𝐵 +o 𝑣)) ∈ On → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
207206adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
208197, 207syld 47 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
209181, 208jcad 512 . . . . . . . . . . . . . . . . . 18 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))))
210 oveq2 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 +o 𝑣) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 +o 𝑣)))
211210sseq2d 4027 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑣) → (((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
212211rspcev 3621 . . . . . . . . . . . . . . . . . 18 (((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
213209, 212syl6 35 . . . . . . . . . . . . . . . . 17 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
214213rexlimdva 3152 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
215214adantr 480 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
216175, 215mpd 15 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
217216ralrimiva 3143 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → ∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
218 iunss2 5053 . . . . . . . . . . . . 13 (∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
219217, 218syl 17 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
220219adantrl 716 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
221168, 220eqssd 4012 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
222 oalimcl 8596 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
22359, 222mpanr1 703 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
224223ancoms 458 . . . . . . . . . . . . . 14 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
225224anim2i 617 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)))
226225an12s 649 . . . . . . . . . . . 12 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)))
227 ovex 7463 . . . . . . . . . . . . 13 (𝐵 +o 𝑥) ∈ V
228 omlim 8569 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
229227, 228mpanr1 703 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
230226, 229syl 17 . . . . . . . . . . 11 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
231230adantr 480 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
23221ad2antlr 727 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴 ·o 𝐵) ∈ On)
23359jctl 523 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ V ∧ Lim 𝑥))
234233anim1ci 616 . . . . . . . . . . . . . . 15 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
235 omlimcl 8614 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
236234, 235sylan 580 . . . . . . . . . . . . . 14 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
237236adantlrr 721 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
238 ovex 7463 . . . . . . . . . . . . 13 (𝐴 ·o 𝑥) ∈ V
239237, 238jctil 519 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥)))
240 oalim 8568 . . . . . . . . . . . 12 (((𝐴 ·o 𝐵) ∈ On ∧ ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
241232, 239, 240syl2anc 584 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
242241adantrr 717 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
243221, 231, 2423eqtr4d 2784 . . . . . . . . 9 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))
244243exp43 436 . . . . . . . 8 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))))
245244com3l 89 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))))
246245imp 406 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
24784, 246oe0lem 8549 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
248247com12 32 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
2495, 10, 15, 20, 30, 58, 248tfinds3 7885 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
250249expdcom 414 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
2512503imp 1110 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962  c0 4338   ciun 4995  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387  (class class class)co 7430   +o coa 8501   ·o comu 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509
This theorem is referenced by:  omass  8616  oeeui  8638  oaabs2  8685  oaabsb  43283  naddwordnexlem4  43390
  Copyright terms: Public domain W3C validator