MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odi Structured version   Visualization version   GIF version

Theorem odi 8609
Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. Theorem 4.3 of [Schloeder] p. 12. (Contributed by NM, 26-Dec-2004.)
Assertion
Ref Expression
odi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))

Proof of Theorem odi
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7432 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7440 . . . . 5 (𝑥 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o ∅)))
3 oveq2 7432 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
43oveq2d 7440 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
52, 4eqeq12d 2742 . . . 4 (𝑥 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅))))
6 oveq2 7432 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7440 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝑦)))
8 oveq2 7432 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
98oveq2d 7440 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))
107, 9eqeq12d 2742 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))))
11 oveq2 7432 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7440 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o suc 𝑦)))
13 oveq2 7432 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
1413oveq2d 7440 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))
1512, 14eqeq12d 2742 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
16 oveq2 7432 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7440 . . . . 5 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝐶)))
18 oveq2 7432 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
1918oveq2d 7440 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2017, 19eqeq12d 2742 . . . 4 (𝑥 = 𝐶 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
21 omcl 8566 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
22 oa0 8546 . . . . . 6 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
24 om0 8547 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2524adantr 479 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) = ∅)
2625oveq2d 7440 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
27 oa0 8546 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2827adantl 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
2928oveq2d 7440 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) = (𝐴 ·o 𝐵))
3023, 26, 293eqtr4rd 2777 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
31 oveq1 7431 . . . . . . . 8 ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
32 oasuc 8554 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
33323adant1 1127 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3433oveq2d 7440 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = (𝐴 ·o suc (𝐵 +o 𝑦)))
35 oacl 8565 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
36 omsuc 8556 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3735, 36sylan2 591 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
38373impb 1112 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3934, 38eqtrd 2766 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
40 omsuc 8556 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
41403adant2 1128 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4241oveq2d 7440 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
43 omcl 8566 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
44 oaass 8591 . . . . . . . . . . . . . . . . . 18 (((𝐴 ·o 𝐵) ∈ On ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4521, 44syl3an1 1160 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4643, 45syl3an2 1161 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
47463exp 1116 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
4847exp4b 429 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))))
4948pm2.43a 54 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5049com4r 94 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5150pm2.43i 52 . . . . . . . . . . 11 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
52513imp 1108 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
5342, 52eqtr4d 2769 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
5439, 53eqeq12d 2742 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) ↔ ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)))
5531, 54imbitrrid 245 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
56553exp 1116 . . . . . 6 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5756com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5857impd 409 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))
59 vex 3466 . . . . . . . . . . . . . 14 𝑥 ∈ V
60 limelon 6440 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6159, 60mpan 688 . . . . . . . . . . . . 13 (Lim 𝑥𝑥 ∈ On)
62 oacl 8565 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
63 om0r 8569 . . . . . . . . . . . . . . 15 ((𝐵 +o 𝑥) ∈ On → (∅ ·o (𝐵 +o 𝑥)) = ∅)
6462, 63syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ∅)
65 om0r 8569 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
66 om0r 8569 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → (∅ ·o 𝑥) = ∅)
6765, 66oveqan12d 7443 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∅ ·o 𝐵) +o (∅ ·o 𝑥)) = (∅ +o ∅))
68 0elon 6430 . . . . . . . . . . . . . . . 16 ∅ ∈ On
69 oa0 8546 . . . . . . . . . . . . . . . 16 (∅ ∈ On → (∅ +o ∅) = ∅)
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 (∅ +o ∅) = ∅
7167, 70eqtr2di 2783 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ∅ = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7264, 71eqtrd 2766 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7361, 72sylan2 591 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Lim 𝑥) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7473ancoms 457 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
75 oveq1 7431 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (∅ ·o (𝐵 +o 𝑥)))
76 oveq1 7431 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
77 oveq1 7431 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·o 𝑥) = (∅ ·o 𝑥))
7876, 77oveq12d 7442 . . . . . . . . . . . 12 (𝐴 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7975, 78eqeq12d 2742 . . . . . . . . . . 11 (𝐴 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥))))
8074, 79imbitrrid 245 . . . . . . . . . 10 (𝐴 = ∅ → ((Lim 𝑥𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
8180expd 414 . . . . . . . . 9 (𝐴 = ∅ → (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
8281com3r 87 . . . . . . . 8 (𝐵 ∈ On → (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
8382imp 405 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
8483a1dd 50 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
85 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝐵 ∈ On)
8662ancoms 457 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
87 onelon 6401 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
8886, 87sylan 578 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
89 ontri1 6410 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ¬ 𝑧𝐵))
90 oawordex 8587 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
9189, 90bitr3d 280 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
9285, 88, 91syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
93 oaord 8577 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
94933expb 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
95 eleq1 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +o 𝑣) = 𝑧 → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
9694, 95sylan9bb 508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣𝑥𝑧 ∈ (𝐵 +o 𝑥)))
97 iba 526 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
9897adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
9996, 98bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10099an32s 650 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
101100biimpcd 248 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐵 +o 𝑥) → (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
102101exp4c 431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))))
103102com4r 94 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))))
104103imp 405 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))))
105104reximdvai 3155 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10692, 105sylbid 239 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧𝐵 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
107106orrd 861 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10861, 107sylanl1 678 . . . . . . . . . . . . . . . 16 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
109108adantlrl 718 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
110109adantlr 713 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
111 0ellim 6439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Lim 𝑥 → ∅ ∈ 𝑥)
112 om00el 8606 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝑥) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥)))
113112biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
114111, 113sylan2i 604 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
11561, 114sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ Lim 𝑥) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
116115exp4b 429 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → (Lim 𝑥 → ∅ ∈ (𝐴 ·o 𝑥)))))
117116com4r 94 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥)))))
118117pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . 22 (Lim 𝑥 → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥))))
119118imp31 416 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ·o 𝑥))
120119a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·o 𝑥)))
121120adantlrr 719 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·o 𝑥)))
122 omordi 8596 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵)))
123122ancom1s 651 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵)))
124 onelss 6418 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵)))
12522sseq2d 4012 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅) ↔ (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵)))
126124, 125sylibrd 258 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
128127adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
129123, 128syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
130129adantll 712 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
131121, 130jcad 511 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))))
132 oveq2 7432 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ∅ → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o ∅))
133132sseq2d 4012 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ∅ → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
134133rspcev 3608 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
135131, 134syl6 35 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
136135adantrr 715 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
137 omordi 8596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
13861, 137sylanl1 678 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
139138adantrd 490 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
140139adantrr 715 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
141 oveq2 7432 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐵 +o 𝑦) = (𝐵 +o 𝑣))
142141oveq2d 7440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝐴 ·o (𝐵 +o 𝑦)) = (𝐴 ·o (𝐵 +o 𝑣)))
143 oveq2 7432 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐴 ·o 𝑦) = (𝐴 ·o 𝑣))
144143oveq2d 7440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
145142, 144eqeq12d 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ↔ (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
146145rspccv 3605 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
147 oveq2 7432 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧))
148 eqeq1 2730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧)))
149147, 148imbitrid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧)))
150 eqimss2 4039 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
151149, 150syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
152151imim2i 16 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → (𝑣𝑥 → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))))
153152impd 409 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
154146, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
155154ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
156140, 155jcad 511 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))))
157 oveq2 7432 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
158157sseq2d 4012 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
159158rspcev 3608 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
161160rexlimdvw 3150 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
162161adantlrr 719 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
163136, 162jaod 857 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
164163adantr 479 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
165110, 164mpd 15 . . . . . . . . . . . . 13 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
166165ralrimiva 3136 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
167 iunss2 5057 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
168166, 167syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
169 omordlim 8607 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
170169ex 411 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
17159, 170mpanr1 701 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
172171ancoms 457 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
173172imp 405 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
174173adantlrr 719 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
175174adantlr 713 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
176 oaordi 8576 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
17761, 176sylan 578 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
178177imp 405 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑣𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))
179178adantlrl 718 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))
180179a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
181180adantlr 713 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
182 limord 6436 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
183 ordelon 6400 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑥𝑣𝑥) → 𝑣 ∈ On)
184182, 183sylan 578 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝑣𝑥) → 𝑣 ∈ On)
185 omcl 8566 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑣 ∈ On) → (𝐴 ·o 𝑣) ∈ On)
186185ancoms 457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑣) ∈ On)
187186adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝑣) ∈ On)
18821adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝐵) ∈ On)
189 oaordi 8576 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·o 𝑣) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
190187, 188, 189syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
191184, 190sylan 578 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
192191an32s 650 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
193192adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
194145rspccva 3607 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
195194eleq2d 2812 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
196195adantll 712 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
197193, 196sylibrd 258 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣))))
198 oacl 8565 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑣 ∈ On) → (𝐵 +o 𝑣) ∈ On)
199198ancoms 457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑣) ∈ On)
200 omcl 8566 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ (𝐵 +o 𝑣) ∈ On) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
201199, 200sylan2 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ (𝑣 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
202201an12s 647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
203184, 202sylan 578 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
204203an32s 650 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
205 onelss 6418 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·o (𝐵 +o 𝑣)) ∈ On → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
207206adantlr 713 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
208197, 207syld 47 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
209181, 208jcad 511 . . . . . . . . . . . . . . . . . 18 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))))
210 oveq2 7432 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 +o 𝑣) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 +o 𝑣)))
211210sseq2d 4012 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑣) → (((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
212211rspcev 3608 . . . . . . . . . . . . . . . . . 18 (((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
213209, 212syl6 35 . . . . . . . . . . . . . . . . 17 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
214213rexlimdva 3145 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
215214adantr 479 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
216175, 215mpd 15 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
217216ralrimiva 3136 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → ∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
218 iunss2 5057 . . . . . . . . . . . . 13 (∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
219217, 218syl 17 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
220219adantrl 714 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
221168, 220eqssd 3997 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
222 oalimcl 8590 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
22359, 222mpanr1 701 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
224223ancoms 457 . . . . . . . . . . . . . 14 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
225224anim2i 615 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)))
226225an12s 647 . . . . . . . . . . . 12 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)))
227 ovex 7457 . . . . . . . . . . . . 13 (𝐵 +o 𝑥) ∈ V
228 omlim 8563 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
229227, 228mpanr1 701 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
230226, 229syl 17 . . . . . . . . . . 11 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
231230adantr 479 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
23221ad2antlr 725 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴 ·o 𝐵) ∈ On)
23359jctl 522 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ V ∧ Lim 𝑥))
234233anim1ci 614 . . . . . . . . . . . . . . 15 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
235 omlimcl 8608 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
236234, 235sylan 578 . . . . . . . . . . . . . 14 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
237236adantlrr 719 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
238 ovex 7457 . . . . . . . . . . . . 13 (𝐴 ·o 𝑥) ∈ V
239237, 238jctil 518 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥)))
240 oalim 8562 . . . . . . . . . . . 12 (((𝐴 ·o 𝐵) ∈ On ∧ ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
241232, 239, 240syl2anc 582 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
242241adantrr 715 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
243221, 231, 2423eqtr4d 2776 . . . . . . . . 9 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))
244243exp43 435 . . . . . . . 8 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))))
245244com3l 89 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))))
246245imp 405 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
24784, 246oe0lem 8543 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
248247com12 32 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
2495, 10, 15, 20, 30, 58, 248tfinds3 7875 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
250249expdcom 413 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
2512503imp 1108 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  wss 3947  c0 4325   ciun 5001  Ord word 6375  Oncon0 6376  Lim wlim 6377  suc csuc 6378  (class class class)co 7424   +o coa 8493   ·o comu 8494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-omul 8501
This theorem is referenced by:  omass  8610  oeeui  8632  oaabs2  8679  oaabsb  42960  naddwordnexlem4  43068
  Copyright terms: Public domain W3C validator