MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odi Structured version   Visualization version   GIF version

Theorem odi 8285
Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. (Contributed by NM, 26-Dec-2004.)
Assertion
Ref Expression
odi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))

Proof of Theorem odi
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7199 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7207 . . . . 5 (𝑥 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o ∅)))
3 oveq2 7199 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
43oveq2d 7207 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
52, 4eqeq12d 2752 . . . 4 (𝑥 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅))))
6 oveq2 7199 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7207 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝑦)))
8 oveq2 7199 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
98oveq2d 7207 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))
107, 9eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))))
11 oveq2 7199 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7207 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o suc 𝑦)))
13 oveq2 7199 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
1413oveq2d 7207 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))
1512, 14eqeq12d 2752 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
16 oveq2 7199 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7207 . . . . 5 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝐶)))
18 oveq2 7199 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶))
1918oveq2d 7207 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
2017, 19eqeq12d 2752 . . . 4 (𝑥 = 𝐶 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
21 omcl 8241 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
22 oa0 8221 . . . . . 6 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o ∅) = (𝐴 ·o 𝐵))
24 om0 8222 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2524adantr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) = ∅)
2625oveq2d 7207 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)) = ((𝐴 ·o 𝐵) +o ∅))
27 oa0 8221 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2827adantl 485 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
2928oveq2d 7207 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) = (𝐴 ·o 𝐵))
3023, 26, 293eqtr4rd 2782 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅)))
31 oveq1 7198 . . . . . . . 8 ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
32 oasuc 8229 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
33323adant1 1132 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3433oveq2d 7207 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = (𝐴 ·o suc (𝐵 +o 𝑦)))
35 oacl 8240 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
36 omsuc 8231 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3735, 36sylan2 596 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
38373impb 1117 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
3934, 38eqtrd 2771 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴))
40 omsuc 8231 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
41403adant2 1133 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4241oveq2d 7207 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
43 omcl 8241 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On)
44 oaass 8267 . . . . . . . . . . . . . . . . . 18 (((𝐴 ·o 𝐵) ∈ On ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4521, 44syl3an1 1165 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
4643, 45syl3an2 1166 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
47463exp 1121 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
4847exp4b 434 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))))
4948pm2.43a 54 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5049com4r 94 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))
5150pm2.43i 52 . . . . . . . . . . 11 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))
52513imp 1113 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))
5342, 52eqtr4d 2774 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))
5439, 53eqeq12d 2752 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) ↔ ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)))
5531, 54syl5ibr 249 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))
56553exp 1121 . . . . . 6 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5756com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))))
5857impd 414 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))
59 vex 3402 . . . . . . . . . . . . . 14 𝑥 ∈ V
60 limelon 6254 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6159, 60mpan 690 . . . . . . . . . . . . 13 (Lim 𝑥𝑥 ∈ On)
62 oacl 8240 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
63 om0r 8244 . . . . . . . . . . . . . . 15 ((𝐵 +o 𝑥) ∈ On → (∅ ·o (𝐵 +o 𝑥)) = ∅)
6462, 63syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ∅)
65 om0r 8244 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → (∅ ·o 𝐵) = ∅)
66 om0r 8244 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → (∅ ·o 𝑥) = ∅)
6765, 66oveqan12d 7210 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∅ ·o 𝐵) +o (∅ ·o 𝑥)) = (∅ +o ∅))
68 0elon 6244 . . . . . . . . . . . . . . . 16 ∅ ∈ On
69 oa0 8221 . . . . . . . . . . . . . . . 16 (∅ ∈ On → (∅ +o ∅) = ∅)
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 (∅ +o ∅) = ∅
7167, 70eqtr2di 2788 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ∅ = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7264, 71eqtrd 2771 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7361, 72sylan2 596 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Lim 𝑥) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7473ancoms 462 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
75 oveq1 7198 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (∅ ·o (𝐵 +o 𝑥)))
76 oveq1 7198 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅ ·o 𝐵))
77 oveq1 7198 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·o 𝑥) = (∅ ·o 𝑥))
7876, 77oveq12d 7209 . . . . . . . . . . . 12 (𝐴 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥)))
7975, 78eqeq12d 2752 . . . . . . . . . . 11 (𝐴 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (∅ ·o (𝐵 +o 𝑥)) = ((∅ ·o 𝐵) +o (∅ ·o 𝑥))))
8074, 79syl5ibr 249 . . . . . . . . . 10 (𝐴 = ∅ → ((Lim 𝑥𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
8180expd 419 . . . . . . . . 9 (𝐴 = ∅ → (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
8281com3r 87 . . . . . . . 8 (𝐵 ∈ On → (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
8382imp 410 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))
8483a1dd 50 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
85 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝐵 ∈ On)
8662ancoms 462 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
87 onelon 6216 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
8886, 87sylan 583 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
89 ontri1 6225 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ¬ 𝑧𝐵))
90 oawordex 8263 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
9189, 90bitr3d 284 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
9285, 88, 91syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧))
93 oaord 8253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
94933expb 1122 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
95 eleq1 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +o 𝑣) = 𝑧 → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
9694, 95sylan9bb 513 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣𝑥𝑧 ∈ (𝐵 +o 𝑥)))
97 iba 531 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
9897adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
9996, 98bitr3d 284 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10099an32s 652 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
101100biimpcd 252 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐵 +o 𝑥) → (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
102101exp4c 436 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))))
103102com4r 94 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))))
104103imp 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))))
105104reximdvai 3181 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10692, 105sylbid 243 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧𝐵 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
107106orrd 863 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
10861, 107sylanl1 680 . . . . . . . . . . . . . . . 16 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
109108adantlrl 720 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
110109adantlr 715 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))
111 0ellim 6253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Lim 𝑥 → ∅ ∈ 𝑥)
112 om00el 8282 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·o 𝑥) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥)))
113112biimprd 251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
114111, 113sylan2i 609 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
11561, 114sylan2 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ Lim 𝑥) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥)))
116115exp4b 434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → (Lim 𝑥 → ∅ ∈ (𝐴 ·o 𝑥)))))
117116com4r 94 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥)))))
118117pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . 22 (Lim 𝑥 → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥))))
119118imp31 421 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ·o 𝑥))
120119a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·o 𝑥)))
121120adantlrr 721 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·o 𝑥)))
122 omordi 8272 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵)))
123122ancom1s 653 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵)))
124 onelss 6233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵)))
12522sseq2d 3919 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅) ↔ (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵)))
126124, 125sylibrd 262 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
128127adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
129123, 128syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
130129adantll 714 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
131121, 130jcad 516 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))))
132 oveq2 7199 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ∅ → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o ∅))
133132sseq2d 3919 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ∅ → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))
134133rspcev 3527 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
135131, 134syl6 35 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
136135adantrr 717 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
137 omordi 8272 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
13861, 137sylanl1 680 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
139138adantrd 495 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
140139adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥)))
141 oveq2 7199 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐵 +o 𝑦) = (𝐵 +o 𝑣))
142141oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝐴 ·o (𝐵 +o 𝑦)) = (𝐴 ·o (𝐵 +o 𝑣)))
143 oveq2 7199 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐴 ·o 𝑦) = (𝐴 ·o 𝑣))
144143oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
145142, 144eqeq12d 2752 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ↔ (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
146145rspccv 3524 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
147 oveq2 7199 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧))
148 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧)))
149147, 148syl5ib 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧)))
150 eqimss2 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
151149, 150syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
152151imim2i 16 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → (𝑣𝑥 → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))))
153152impd 414 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
154146, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
155154ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
156140, 155jcad 516 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))))
157 oveq2 7199 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
158157sseq2d 3919 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
159158rspcev 3527 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
161160rexlimdvw 3199 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
162161adantlrr 721 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
163136, 162jaod 859 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
164163adantr 484 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)))
165110, 164mpd 15 . . . . . . . . . . . . 13 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
166165ralrimiva 3095 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))
167 iunss2 4944 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
168166, 167syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
169 omordlim 8283 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
170169ex 416 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
17159, 170mpanr1 703 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
172171ancoms 462 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣)))
173172imp 410 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
174173adantlrr 721 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
175174adantlr 715 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣))
176 oaordi 8252 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
17761, 176sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
178177imp 410 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑣𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))
179178adantlrl 720 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))
180179a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
181180adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)))
182 limord 6250 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
183 ordelon 6215 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑥𝑣𝑥) → 𝑣 ∈ On)
184182, 183sylan 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝑣𝑥) → 𝑣 ∈ On)
185 omcl 8241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑣 ∈ On) → (𝐴 ·o 𝑣) ∈ On)
186185ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑣) ∈ On)
187186adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝑣) ∈ On)
18821adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝐵) ∈ On)
189 oaordi 8252 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·o 𝑣) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
190187, 188, 189syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
191184, 190sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
192191an32s 652 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
193192adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
194145rspccva 3526 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))
195194eleq2d 2816 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
196195adantll 714 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))
197193, 196sylibrd 262 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣))))
198 oacl 8240 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑣 ∈ On) → (𝐵 +o 𝑣) ∈ On)
199198ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑣) ∈ On)
200 omcl 8241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ (𝐵 +o 𝑣) ∈ On) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
201199, 200sylan2 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ (𝑣 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
202201an12s 649 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
203184, 202sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
204203an32s 652 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On)
205 onelss 6233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·o (𝐵 +o 𝑣)) ∈ On → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
207206adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
208197, 207syld 47 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
209181, 208jcad 516 . . . . . . . . . . . . . . . . . 18 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))))
210 oveq2 7199 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 +o 𝑣) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 +o 𝑣)))
211210sseq2d 3919 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑣) → (((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))
212211rspcev 3527 . . . . . . . . . . . . . . . . . 18 (((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
213209, 212syl6 35 . . . . . . . . . . . . . . . . 17 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
214213rexlimdva 3193 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
215214adantr 484 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)))
216175, 215mpd 15 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
217216ralrimiva 3095 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → ∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))
218 iunss2 4944 . . . . . . . . . . . . 13 (∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
219217, 218syl 17 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
220219adantrl 716 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
221168, 220eqssd 3904 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
222 oalimcl 8266 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
22359, 222mpanr1 703 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
224223ancoms 462 . . . . . . . . . . . . . 14 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
225224anim2i 620 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)))
226225an12s 649 . . . . . . . . . . . 12 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)))
227 ovex 7224 . . . . . . . . . . . . 13 (𝐵 +o 𝑥) ∈ V
228 omlim 8238 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
229227, 228mpanr1 703 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
230226, 229syl 17 . . . . . . . . . . 11 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
231230adantr 484 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧))
23221ad2antlr 727 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴 ·o 𝐵) ∈ On)
23359jctl 527 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ V ∧ Lim 𝑥))
234233anim1ci 619 . . . . . . . . . . . . . . 15 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
235 omlimcl 8284 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
236234, 235sylan 583 . . . . . . . . . . . . . 14 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
237236adantlrr 721 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥))
238 ovex 7224 . . . . . . . . . . . . 13 (𝐴 ·o 𝑥) ∈ V
239237, 238jctil 523 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥)))
240 oalim 8237 . . . . . . . . . . . 12 (((𝐴 ·o 𝐵) ∈ On ∧ ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
241232, 239, 240syl2anc 587 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
242241adantrr 717 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤))
243221, 231, 2423eqtr4d 2781 . . . . . . . . 9 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))
244243exp43 440 . . . . . . . 8 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))))
245244com3l 89 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))))
246245imp 410 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
24784, 246oe0lem 8218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
248247com12 32 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))
2495, 10, 15, 20, 30, 58, 248tfinds3 7621 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))
250249expdcom 418 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))))
2512503imp 1113 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853  c0 4223   ciun 4890  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193  (class class class)co 7191   +o coa 8177   ·o comu 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-omul 8185
This theorem is referenced by:  omass  8286  oeeui  8308  oaabs2  8352
  Copyright terms: Public domain W3C validator