Step | Hyp | Ref
| Expression |
1 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅)) |
2 | 1 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o ∅))) |
3 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o
∅)) |
4 | 3 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o
∅))) |
5 | 2, 4 | eqeq12d 2755 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o ∅)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o
∅)))) |
6 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦)) |
7 | 6 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝑦))) |
8 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) |
9 | 8 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) |
10 | 7, 9 | eqeq12d 2755 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) |
11 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦)) |
12 | 11 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o suc 𝑦))) |
13 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) |
14 | 13 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))) |
15 | 12, 14 | eqeq12d 2755 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))) |
16 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶)) |
17 | 16 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐴 ·o (𝐵 +o 𝑥)) = (𝐴 ·o (𝐵 +o 𝐶))) |
18 | | oveq2 7276 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐶)) |
19 | 18 | oveq2d 7284 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |
20 | 17, 19 | eqeq12d 2755 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))) |
21 | | omcl 8342 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
22 | | oa0 8322 |
. . . . . 6
⊢ ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) +o ∅) =
(𝐴 ·o
𝐵)) |
23 | 21, 22 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o ∅) =
(𝐴 ·o
𝐵)) |
24 | | om0 8323 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 ·o ∅) =
∅) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ∅) =
∅) |
26 | 25 | oveq2d 7284 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o ∅))
= ((𝐴 ·o
𝐵) +o
∅)) |
27 | | oa0 8322 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵) |
28 | 27 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵) |
29 | 28 | oveq2d 7284 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) =
(𝐴 ·o
𝐵)) |
30 | 23, 26, 29 | 3eqtr4rd 2790 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o ∅)) =
((𝐴 ·o
𝐵) +o (𝐴 ·o
∅))) |
31 | | oveq1 7275 |
. . . . . . . 8
⊢ ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)) |
32 | | oasuc 8330 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) |
33 | 32 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) |
34 | 33 | oveq2d 7284 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = (𝐴 ·o suc (𝐵 +o 𝑦))) |
35 | | oacl 8341 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On) |
36 | | omsuc 8332 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴)) |
37 | 35, 36 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴)) |
38 | 37 | 3impb 1113 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc (𝐵 +o 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴)) |
39 | 34, 38 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴)) |
40 | | omsuc 8332 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) |
41 | 40 | 3adant2 1129 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) |
42 | 41 | oveq2d 7284 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))) |
43 | | omcl 8342 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o 𝑦) ∈ On) |
44 | | oaass 8368 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ·o 𝐵) ∈ On ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))) |
45 | 21, 44 | syl3an1 1161 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))) |
46 | 43, 45 | syl3an2 1162 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))) |
47 | 46 | 3exp 1117 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))) |
48 | 47 | exp4b 430 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))))) |
49 | 48 | pm2.43a 54 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))) |
50 | 49 | com4r 94 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴)))))) |
51 | 50 | pm2.43i 52 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))))) |
52 | 51 | 3imp 1109 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴) = ((𝐴 ·o 𝐵) +o ((𝐴 ·o 𝑦) +o 𝐴))) |
53 | 42, 52 | eqtr4d 2782 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴)) |
54 | 39, 53 | eqeq12d 2755 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)) ↔ ((𝐴 ·o (𝐵 +o 𝑦)) +o 𝐴) = (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) +o 𝐴))) |
55 | 31, 54 | syl5ibr 245 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))) |
56 | 55 | 3exp 1117 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))) |
57 | 56 | com3r 87 |
. . . . 5
⊢ (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦)))))) |
58 | 57 | impd 410 |
. . . 4
⊢ (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o suc 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o suc 𝑦))))) |
59 | | vex 3434 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
60 | | limelon 6326 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) |
61 | 59, 60 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (Lim
𝑥 → 𝑥 ∈ On) |
62 | | oacl 8341 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On) |
63 | | om0r 8345 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 +o 𝑥) ∈ On → (∅
·o (𝐵
+o 𝑥)) =
∅) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅
·o (𝐵
+o 𝑥)) =
∅) |
65 | | om0r 8345 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ On → (∅
·o 𝐵) =
∅) |
66 | | om0r 8345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ On → (∅
·o 𝑥) =
∅) |
67 | 65, 66 | oveqan12d 7287 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∅
·o 𝐵)
+o (∅ ·o 𝑥)) = (∅ +o
∅)) |
68 | | 0elon 6316 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ On |
69 | | oa0 8322 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∈ On → (∅ +o ∅) = ∅) |
70 | 68, 69 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (∅
+o ∅) = ∅ |
71 | 67, 70 | eqtr2di 2796 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ∅ =
((∅ ·o 𝐵) +o (∅
·o 𝑥))) |
72 | 64, 71 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅
·o (𝐵
+o 𝑥)) =
((∅ ·o 𝐵) +o (∅
·o 𝑥))) |
73 | 61, 72 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ Lim 𝑥) → (∅
·o (𝐵
+o 𝑥)) =
((∅ ·o 𝐵) +o (∅
·o 𝑥))) |
74 | 73 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((Lim
𝑥 ∧ 𝐵 ∈ On) → (∅
·o (𝐵
+o 𝑥)) =
((∅ ·o 𝐵) +o (∅
·o 𝑥))) |
75 | | oveq1 7275 |
. . . . . . . . . . . 12
⊢ (𝐴 = ∅ → (𝐴 ·o (𝐵 +o 𝑥)) = (∅
·o (𝐵
+o 𝑥))) |
76 | | oveq1 7275 |
. . . . . . . . . . . . 13
⊢ (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅
·o 𝐵)) |
77 | | oveq1 7275 |
. . . . . . . . . . . . 13
⊢ (𝐴 = ∅ → (𝐴 ·o 𝑥) = (∅
·o 𝑥)) |
78 | 76, 77 | oveq12d 7286 |
. . . . . . . . . . . 12
⊢ (𝐴 = ∅ → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ((∅
·o 𝐵)
+o (∅ ·o 𝑥))) |
79 | 75, 78 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → ((𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) ↔ (∅ ·o
(𝐵 +o 𝑥)) = ((∅
·o 𝐵)
+o (∅ ·o 𝑥)))) |
80 | 74, 79 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ → ((Lim 𝑥 ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))) |
81 | 80 | expd 415 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))) |
82 | 81 | com3r 87 |
. . . . . . . 8
⊢ (𝐵 ∈ On → (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))) |
83 | 82 | imp 406 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))) |
84 | 83 | a1dd 50 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))) |
85 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝐵 ∈ On) |
86 | 62 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On) |
87 | | onelon 6288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On) |
88 | 86, 87 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On) |
89 | | ontri1 6297 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝐵)) |
90 | | oawordex 8364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵 ⊆ 𝑧 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧)) |
91 | 89, 90 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧 ∈ 𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧)) |
92 | 85, 88, 91 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧 ∈ 𝐵 ↔ ∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧)) |
93 | | oaord 8354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣 ∈ 𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))) |
94 | 93 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣 ∈ 𝑥 ↔ (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))) |
95 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐵 +o 𝑣) = 𝑧 → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥))) |
96 | 94, 95 | sylan9bb 509 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣 ∈ 𝑥 ↔ 𝑧 ∈ (𝐵 +o 𝑥))) |
97 | | iba 527 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐵 +o 𝑣) = 𝑧 → (𝑣 ∈ 𝑥 ↔ (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
98 | 97 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑣 ∈ 𝑥 ↔ (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
99 | 96, 98 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑣) = 𝑧) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
100 | 99 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) ↔ (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
101 | 100 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ (𝐵 +o 𝑥) → (((𝑣 ∈ On ∧ (𝐵 +o 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
102 | 101 | exp4c 432 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))))) |
103 | 102 | com4r 94 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))))) |
104 | 103 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑣 ∈ On → ((𝐵 +o 𝑣) = 𝑧 → (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)))) |
105 | 104 | reximdvai 3201 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑣 ∈ On (𝐵 +o 𝑣) = 𝑧 → ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
106 | 92, 105 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (¬ 𝑧 ∈ 𝐵 → ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
107 | 106 | orrd 859 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ 𝐵 ∨ ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
108 | 61, 107 | sylanl1 676 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝑥 ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ 𝐵 ∨ ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
109 | 108 | adantlrl 716 |
. . . . . . . . . . . . . . 15
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ 𝐵 ∨ ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
110 | 109 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ 𝐵 ∨ ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧))) |
111 | | 0ellim 6325 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (Lim
𝑥 → ∅ ∈
𝑥) |
112 | | om00el 8383 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅
∈ (𝐴
·o 𝑥)
↔ (∅ ∈ 𝐴
∧ ∅ ∈ 𝑥))) |
113 | 112 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅
∈ 𝐴 ∧ ∅
∈ 𝑥) → ∅
∈ (𝐴
·o 𝑥))) |
114 | 111, 113 | sylan2i 605 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅
∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥))) |
115 | 61, 114 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·o 𝑥))) |
116 | 115 | exp4b 430 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → (Lim 𝑥 → ∅ ∈ (𝐴 ·o 𝑥))))) |
117 | 116 | com4r 94 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Lim
𝑥 → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥))))) |
118 | 117 | pm2.43a 54 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Lim
𝑥 → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·o 𝑥)))) |
119 | 118 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ·o 𝑥)) |
120 | 119 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ 𝐵 → ∅ ∈ (𝐴 ·o 𝑥))) |
121 | 120 | adantlrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ 𝐵 → ∅ ∈ (𝐴 ·o 𝑥))) |
122 | | omordi 8373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → (𝑧 ∈ 𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵))) |
123 | 122 | ancom1s 649 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (𝑧 ∈ 𝐵 → (𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵))) |
124 | | onelss 6305 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵))) |
125 | 22 | sseq2d 3957 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅) ↔ (𝐴 ·o 𝑧) ⊆ (𝐴 ·o 𝐵))) |
126 | 124, 125 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))) |
127 | 21, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))) |
128 | 127 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝑧) ∈ (𝐴 ·o 𝐵) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))) |
129 | 123, 128 | syld 47 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (𝑧 ∈ 𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))) |
130 | 129 | adantll 710 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ 𝐵 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))) |
131 | 121, 130 | jcad 512 |
. . . . . . . . . . . . . . . . . 18
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ 𝐵 → (∅ ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅)))) |
132 | | oveq2 7276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = ∅ → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o ∅)) |
133 | 132 | sseq2d 3957 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = ∅ → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o ∅))) |
134 | 133 | rspcev 3560 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∅
∈ (𝐴
·o 𝑥)
∧ (𝐴
·o 𝑧)
⊆ ((𝐴
·o 𝐵)
+o ∅)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)) |
135 | 131, 134 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧 ∈ 𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
136 | 135 | adantrr 713 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝑧 ∈ 𝐵 → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
137 | | omordi 8373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → (𝑣 ∈ 𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥))) |
138 | 61, 137 | sylanl1 676 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣 ∈ 𝑥 → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥))) |
139 | 138 | adantrd 491 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥))) |
140 | 139 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥))) |
141 | | oveq2 7276 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑣 → (𝐵 +o 𝑦) = (𝐵 +o 𝑣)) |
142 | 141 | oveq2d 7284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑣 → (𝐴 ·o (𝐵 +o 𝑦)) = (𝐴 ·o (𝐵 +o 𝑣))) |
143 | | oveq2 7276 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑣 → (𝐴 ·o 𝑦) = (𝐴 ·o 𝑣)) |
144 | 143 | oveq2d 7284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑣 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) |
145 | 142, 144 | eqeq12d 2755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑣 → ((𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ↔ (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
146 | 145 | rspccv 3557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈
𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝑣 ∈ 𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
147 | | oveq2 7276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧)) |
148 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐴 ·o (𝐵 +o 𝑣)) = (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧))) |
149 | 147, 148 | syl5ib 243 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧))) |
150 | | eqimss2 3982 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) = (𝐴 ·o 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) |
151 | 149, 150 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)) → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
152 | 151 | imim2i 16 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ 𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → (𝑣 ∈ 𝑥 → ((𝐵 +o 𝑣) = 𝑧 → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))) |
153 | 152 | impd 410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ 𝑥 → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
154 | 146, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 ∈
𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
155 | 154 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
156 | 140, 155 | jcad 512 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))))) |
157 | | oveq2 7276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) |
158 | 157 | sseq2d 3957 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = (𝐴 ·o 𝑣) → ((𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) ↔ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
159 | 158 | rspcev 3560 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ·o 𝑣) ∈ (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)) |
160 | 156, 159 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
161 | 160 | rexlimdvw 3220 |
. . . . . . . . . . . . . . . . 17
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
162 | 161 | adantlrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
163 | 136, 162 | jaod 855 |
. . . . . . . . . . . . . . 15
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝑧 ∈ 𝐵 ∨ ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
164 | 163 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑧 ∈ 𝐵 ∨ ∃𝑣 ∈ On (𝑣 ∈ 𝑥 ∧ (𝐵 +o 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤))) |
165 | 110, 164 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)) |
166 | 165 | ralrimiva 3109 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤)) |
167 | | iunss2 4983 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
(𝐵 +o 𝑥)∃𝑤 ∈ (𝐴 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ ((𝐴 ·o 𝐵) +o 𝑤) → ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ ∪
𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤)) |
168 | 166, 167 | syl 17 |
. . . . . . . . . . 11
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∪ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) ⊆ ∪
𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤)) |
169 | | omordlim 8384 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣)) |
170 | 169 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣))) |
171 | 59, 170 | mpanr1 699 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣))) |
172 | 171 | ancoms 458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑥) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣))) |
173 | 172 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣)) |
174 | 173 | adantlrr 717 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣)) |
175 | 174 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣)) |
176 | | oaordi 8353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣 ∈ 𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))) |
177 | 61, 176 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Lim
𝑥 ∧ 𝐵 ∈ On) → (𝑣 ∈ 𝑥 → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))) |
178 | 177 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((Lim
𝑥 ∧ 𝐵 ∈ On) ∧ 𝑣 ∈ 𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)) |
179 | 178 | adantlrl 716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣 ∈ 𝑥) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥)) |
180 | 179 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))) |
181 | 180 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → (𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥))) |
182 | | limord 6322 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Lim
𝑥 → Ord 𝑥) |
183 | | ordelon 6287 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Ord
𝑥 ∧ 𝑣 ∈ 𝑥) → 𝑣 ∈ On) |
184 | 182, 183 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Lim
𝑥 ∧ 𝑣 ∈ 𝑥) → 𝑣 ∈ On) |
185 | | omcl 8342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ On ∧ 𝑣 ∈ On) → (𝐴 ·o 𝑣) ∈ On) |
186 | 185 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝑣) ∈ On) |
187 | 186 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝑣) ∈ On) |
188 | 21 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o 𝐵) ∈ On) |
189 | | oaordi 8353 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ·o 𝑣) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
190 | 187, 188,
189 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
191 | 184, 190 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((Lim
𝑥 ∧ 𝑣 ∈ 𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
192 | 191 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
193 | 192 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
194 | 145 | rspccva 3559 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑦 ∈
𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣 ∈ 𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣))) |
195 | 194 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑦 ∈
𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) ∧ 𝑣 ∈ 𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
196 | 195 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ∈ ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑣)))) |
197 | 193, 196 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)))) |
198 | | oacl 8341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐵 ∈ On ∧ 𝑣 ∈ On) → (𝐵 +o 𝑣) ∈ On) |
199 | 198 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑣) ∈ On) |
200 | | omcl 8342 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ On ∧ (𝐵 +o 𝑣) ∈ On) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On) |
201 | 199, 200 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ On ∧ (𝑣 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On) |
202 | 201 | an12s 645 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On) |
203 | 184, 202 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((Lim
𝑥 ∧ 𝑣 ∈ 𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On) |
204 | 203 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣 ∈ 𝑥) → (𝐴 ·o (𝐵 +o 𝑣)) ∈ On) |
205 | | onelss 6305 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ·o (𝐵 +o 𝑣)) ∈ On → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))) |
206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣 ∈ 𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))) |
207 | 206 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (((𝐴 ·o 𝐵) +o 𝑤) ∈ (𝐴 ·o (𝐵 +o 𝑣)) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))) |
208 | 197, 207 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))) |
209 | 181, 208 | jcad 512 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))))) |
210 | | oveq2 7276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝐵 +o 𝑣) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 +o 𝑣))) |
211 | 210 | sseq2d 3957 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝐵 +o 𝑣) → (((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) ↔ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣)))) |
212 | 211 | rspcev 3560 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵 +o 𝑣) ∈ (𝐵 +o 𝑥) ∧ ((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o (𝐵 +o 𝑣))) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)) |
213 | 209, 212 | syl6 35 |
. . . . . . . . . . . . . . . . 17
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑣 ∈ 𝑥) → (𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))) |
214 | 213 | rexlimdva 3214 |
. . . . . . . . . . . . . . . 16
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → (∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))) |
215 | 214 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → (∃𝑣 ∈ 𝑥 𝑤 ∈ (𝐴 ·o 𝑣) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧))) |
216 | 175, 215 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) ∧ 𝑤 ∈ (𝐴 ·o 𝑥)) → ∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)) |
217 | 216 | ralrimiva 3109 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → ∀𝑤 ∈ (𝐴 ·o 𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧)) |
218 | | iunss2 4983 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
(𝐴 ·o
𝑥)∃𝑧 ∈ (𝐵 +o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ (𝐴 ·o 𝑧) → ∪
𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦))) → ∪ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
220 | 219 | adantrl 712 |
. . . . . . . . . . 11
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∪ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤) ⊆ ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
221 | 168, 220 | eqssd 3942 |
. . . . . . . . . 10
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ∪ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧) = ∪ 𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤)) |
222 | | oalimcl 8367 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥)) |
223 | 59, 222 | mpanr1 699 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥)) |
224 | 223 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((Lim
𝑥 ∧ 𝐵 ∈ On) → Lim (𝐵 +o 𝑥)) |
225 | 224 | anim2i 616 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥))) |
226 | 225 | an12s 645 |
. . . . . . . . . . . 12
⊢ ((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥))) |
227 | | ovex 7301 |
. . . . . . . . . . . . 13
⊢ (𝐵 +o 𝑥) ∈ V |
228 | | omlim 8339 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 ·o (𝐵 +o 𝑥)) = ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
229 | 227, 228 | mpanr1 699 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 ·o (𝐵 +o 𝑥)) = ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
230 | 226, 229 | syl 17 |
. . . . . . . . . . 11
⊢ ((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·o (𝐵 +o 𝑥)) = ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
231 | 230 | adantr 480 |
. . . . . . . . . 10
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = ∪
𝑧 ∈ (𝐵 +o 𝑥)(𝐴 ·o 𝑧)) |
232 | 21 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴 ·o 𝐵) ∈ On) |
233 | 59 | jctl 523 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝑥 → (𝑥 ∈ V ∧ Lim 𝑥)) |
234 | 233 | anim1ci 615 |
. . . . . . . . . . . . . . 15
⊢ ((Lim
𝑥 ∧ 𝐴 ∈ On) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) |
235 | | omlimcl 8385 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥)) |
236 | 234, 235 | sylan 579 |
. . . . . . . . . . . . . 14
⊢ (((Lim
𝑥 ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥)) |
237 | 236 | adantlrr 717 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝑥)) |
238 | | ovex 7301 |
. . . . . . . . . . . . 13
⊢ (𝐴 ·o 𝑥) ∈ V |
239 | 237, 238 | jctil 519 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥))) |
240 | | oalim 8338 |
. . . . . . . . . . . 12
⊢ (((𝐴 ·o 𝐵) ∈ On ∧ ((𝐴 ·o 𝑥) ∈ V ∧ Lim (𝐴 ·o 𝑥))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ∪
𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤)) |
241 | 232, 239,
240 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ∪
𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤)) |
242 | 241 | adantrr 713 |
. . . . . . . . . 10
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)) = ∪
𝑤 ∈ (𝐴 ·o 𝑥)((𝐴 ·o 𝐵) +o 𝑤)) |
243 | 221, 231,
242 | 3eqtr4d 2789 |
. . . . . . . . 9
⊢ (((Lim
𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)))) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))) |
244 | 243 | exp43 436 |
. . . . . . . 8
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅
∈ 𝐴 →
(∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))) |
245 | 244 | com3l 89 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅
∈ 𝐴 → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥)))))) |
246 | 245 | imp 406 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))) |
247 | 84, 246 | oe0lem 8319 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))) |
248 | 247 | com12 32 |
. . . 4
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
(∀𝑦 ∈ 𝑥 (𝐴 ·o (𝐵 +o 𝑦)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑦)) → (𝐴 ·o (𝐵 +o 𝑥)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝑥))))) |
249 | 5, 10, 15, 20, 30, 58, 248 | tfinds3 7699 |
. . 3
⊢ (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶)))) |
250 | 249 | expdcom 414 |
. 2
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))))) |
251 | 250 | 3imp 1109 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) |