Step | Hyp | Ref
| Expression |
1 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = β
β (π΅ +o π₯) = (π΅ +o β
)) |
2 | 1 | oveq2d 7425 |
. . . . 5
β’ (π₯ = β
β (π΄ Β·o (π΅ +o π₯)) = (π΄ Β·o (π΅ +o β
))) |
3 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = β
β (π΄ Β·o π₯) = (π΄ Β·o
β
)) |
4 | 3 | oveq2d 7425 |
. . . . 5
β’ (π₯ = β
β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o
β
))) |
5 | 2, 4 | eqeq12d 2749 |
. . . 4
β’ (π₯ = β
β ((π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) β (π΄ Β·o (π΅ +o β
)) = ((π΄ Β·o π΅) +o (π΄ Β·o
β
)))) |
6 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = π¦ β (π΅ +o π₯) = (π΅ +o π¦)) |
7 | 6 | oveq2d 7425 |
. . . . 5
β’ (π₯ = π¦ β (π΄ Β·o (π΅ +o π₯)) = (π΄ Β·o (π΅ +o π¦))) |
8 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = π¦ β (π΄ Β·o π₯) = (π΄ Β·o π¦)) |
9 | 8 | oveq2d 7425 |
. . . . 5
β’ (π₯ = π¦ β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) |
10 | 7, 9 | eqeq12d 2749 |
. . . 4
β’ (π₯ = π¦ β ((π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) β (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) |
11 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = suc π¦ β (π΅ +o π₯) = (π΅ +o suc π¦)) |
12 | 11 | oveq2d 7425 |
. . . . 5
β’ (π₯ = suc π¦ β (π΄ Β·o (π΅ +o π₯)) = (π΄ Β·o (π΅ +o suc π¦))) |
13 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = suc π¦ β (π΄ Β·o π₯) = (π΄ Β·o suc π¦)) |
14 | 13 | oveq2d 7425 |
. . . . 5
β’ (π₯ = suc π¦ β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦))) |
15 | 12, 14 | eqeq12d 2749 |
. . . 4
β’ (π₯ = suc π¦ β ((π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) β (π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)))) |
16 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = πΆ β (π΅ +o π₯) = (π΅ +o πΆ)) |
17 | 16 | oveq2d 7425 |
. . . . 5
β’ (π₯ = πΆ β (π΄ Β·o (π΅ +o π₯)) = (π΄ Β·o (π΅ +o πΆ))) |
18 | | oveq2 7417 |
. . . . . 6
β’ (π₯ = πΆ β (π΄ Β·o π₯) = (π΄ Β·o πΆ)) |
19 | 18 | oveq2d 7425 |
. . . . 5
β’ (π₯ = πΆ β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o πΆ))) |
20 | 17, 19 | eqeq12d 2749 |
. . . 4
β’ (π₯ = πΆ β ((π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) β (π΄ Β·o (π΅ +o πΆ)) = ((π΄ Β·o π΅) +o (π΄ Β·o πΆ)))) |
21 | | omcl 8536 |
. . . . . 6
β’ ((π΄ β On β§ π΅ β On) β (π΄ Β·o π΅) β On) |
22 | | oa0 8516 |
. . . . . 6
β’ ((π΄ Β·o π΅) β On β ((π΄ Β·o π΅) +o β
) =
(π΄ Β·o
π΅)) |
23 | 21, 22 | syl 17 |
. . . . 5
β’ ((π΄ β On β§ π΅ β On) β ((π΄ Β·o π΅) +o β
) =
(π΄ Β·o
π΅)) |
24 | | om0 8517 |
. . . . . . 7
β’ (π΄ β On β (π΄ Β·o β
) =
β
) |
25 | 24 | adantr 482 |
. . . . . 6
β’ ((π΄ β On β§ π΅ β On) β (π΄ Β·o β
) =
β
) |
26 | 25 | oveq2d 7425 |
. . . . 5
β’ ((π΄ β On β§ π΅ β On) β ((π΄ Β·o π΅) +o (π΄ Β·o β
))
= ((π΄ Β·o
π΅) +o
β
)) |
27 | | oa0 8516 |
. . . . . . 7
β’ (π΅ β On β (π΅ +o β
) = π΅) |
28 | 27 | adantl 483 |
. . . . . 6
β’ ((π΄ β On β§ π΅ β On) β (π΅ +o β
) = π΅) |
29 | 28 | oveq2d 7425 |
. . . . 5
β’ ((π΄ β On β§ π΅ β On) β (π΄ Β·o (π΅ +o β
)) =
(π΄ Β·o
π΅)) |
30 | 23, 26, 29 | 3eqtr4rd 2784 |
. . . 4
β’ ((π΄ β On β§ π΅ β On) β (π΄ Β·o (π΅ +o β
)) =
((π΄ Β·o
π΅) +o (π΄ Β·o
β
))) |
31 | | oveq1 7416 |
. . . . . . . 8
β’ ((π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β ((π΄ Β·o (π΅ +o π¦)) +o π΄) = (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄)) |
32 | | oasuc 8524 |
. . . . . . . . . . . 12
β’ ((π΅ β On β§ π¦ β On) β (π΅ +o suc π¦) = suc (π΅ +o π¦)) |
33 | 32 | 3adant1 1131 |
. . . . . . . . . . 11
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β (π΅ +o suc π¦) = suc (π΅ +o π¦)) |
34 | 33 | oveq2d 7425 |
. . . . . . . . . 10
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β (π΄ Β·o (π΅ +o suc π¦)) = (π΄ Β·o suc (π΅ +o π¦))) |
35 | | oacl 8535 |
. . . . . . . . . . . 12
β’ ((π΅ β On β§ π¦ β On) β (π΅ +o π¦) β On) |
36 | | omsuc 8526 |
. . . . . . . . . . . 12
β’ ((π΄ β On β§ (π΅ +o π¦) β On) β (π΄ Β·o suc (π΅ +o π¦)) = ((π΄ Β·o (π΅ +o π¦)) +o π΄)) |
37 | 35, 36 | sylan2 594 |
. . . . . . . . . . 11
β’ ((π΄ β On β§ (π΅ β On β§ π¦ β On)) β (π΄ Β·o suc (π΅ +o π¦)) = ((π΄ Β·o (π΅ +o π¦)) +o π΄)) |
38 | 37 | 3impb 1116 |
. . . . . . . . . 10
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β (π΄ Β·o suc (π΅ +o π¦)) = ((π΄ Β·o (π΅ +o π¦)) +o π΄)) |
39 | 34, 38 | eqtrd 2773 |
. . . . . . . . 9
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β (π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o (π΅ +o π¦)) +o π΄)) |
40 | | omsuc 8526 |
. . . . . . . . . . . 12
β’ ((π΄ β On β§ π¦ β On) β (π΄ Β·o suc π¦) = ((π΄ Β·o π¦) +o π΄)) |
41 | 40 | 3adant2 1132 |
. . . . . . . . . . 11
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β (π΄ Β·o suc π¦) = ((π΄ Β·o π¦) +o π΄)) |
42 | 41 | oveq2d 7425 |
. . . . . . . . . 10
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))) |
43 | | omcl 8536 |
. . . . . . . . . . . . . . . . 17
β’ ((π΄ β On β§ π¦ β On) β (π΄ Β·o π¦) β On) |
44 | | oaass 8561 |
. . . . . . . . . . . . . . . . . 18
β’ (((π΄ Β·o π΅) β On β§ (π΄ Β·o π¦) β On β§ π΄ β On) β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))) |
45 | 21, 44 | syl3an1 1164 |
. . . . . . . . . . . . . . . . 17
β’ (((π΄ β On β§ π΅ β On) β§ (π΄ Β·o π¦) β On β§ π΄ β On) β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))) |
46 | 43, 45 | syl3an2 1165 |
. . . . . . . . . . . . . . . 16
β’ (((π΄ β On β§ π΅ β On) β§ (π΄ β On β§ π¦ β On) β§ π΄ β On) β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))) |
47 | 46 | 3exp 1120 |
. . . . . . . . . . . . . . 15
β’ ((π΄ β On β§ π΅ β On) β ((π΄ β On β§ π¦ β On) β (π΄ β On β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))))) |
48 | 47 | exp4b 432 |
. . . . . . . . . . . . . 14
β’ (π΄ β On β (π΅ β On β (π΄ β On β (π¦ β On β (π΄ β On β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))))))) |
49 | 48 | pm2.43a 54 |
. . . . . . . . . . . . 13
β’ (π΄ β On β (π΅ β On β (π¦ β On β (π΄ β On β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄)))))) |
50 | 49 | com4r 94 |
. . . . . . . . . . . 12
β’ (π΄ β On β (π΄ β On β (π΅ β On β (π¦ β On β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄)))))) |
51 | 50 | pm2.43i 52 |
. . . . . . . . . . 11
β’ (π΄ β On β (π΅ β On β (π¦ β On β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))))) |
52 | 51 | 3imp 1112 |
. . . . . . . . . 10
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄) = ((π΄ Β·o π΅) +o ((π΄ Β·o π¦) +o π΄))) |
53 | 42, 52 | eqtr4d 2776 |
. . . . . . . . 9
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)) = (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄)) |
54 | 39, 53 | eqeq12d 2749 |
. . . . . . . 8
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β ((π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)) β ((π΄ Β·o (π΅ +o π¦)) +o π΄) = (((π΄ Β·o π΅) +o (π΄ Β·o π¦)) +o π΄))) |
55 | 31, 54 | imbitrrid 245 |
. . . . . . 7
β’ ((π΄ β On β§ π΅ β On β§ π¦ β On) β ((π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)))) |
56 | 55 | 3exp 1120 |
. . . . . 6
β’ (π΄ β On β (π΅ β On β (π¦ β On β ((π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)))))) |
57 | 56 | com3r 87 |
. . . . 5
β’ (π¦ β On β (π΄ β On β (π΅ β On β ((π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦)))))) |
58 | 57 | impd 412 |
. . . 4
β’ (π¦ β On β ((π΄ β On β§ π΅ β On) β ((π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o suc π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o suc π¦))))) |
59 | | vex 3479 |
. . . . . . . . . . . . . 14
β’ π₯ β V |
60 | | limelon 6429 |
. . . . . . . . . . . . . 14
β’ ((π₯ β V β§ Lim π₯) β π₯ β On) |
61 | 59, 60 | mpan 689 |
. . . . . . . . . . . . 13
β’ (Lim
π₯ β π₯ β On) |
62 | | oacl 8535 |
. . . . . . . . . . . . . . 15
β’ ((π΅ β On β§ π₯ β On) β (π΅ +o π₯) β On) |
63 | | om0r 8539 |
. . . . . . . . . . . . . . 15
β’ ((π΅ +o π₯) β On β (β
Β·o (π΅
+o π₯)) =
β
) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π΅ β On β§ π₯ β On) β (β
Β·o (π΅
+o π₯)) =
β
) |
65 | | om0r 8539 |
. . . . . . . . . . . . . . . 16
β’ (π΅ β On β (β
Β·o π΅) =
β
) |
66 | | om0r 8539 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β On β (β
Β·o π₯) =
β
) |
67 | 65, 66 | oveqan12d 7428 |
. . . . . . . . . . . . . . 15
β’ ((π΅ β On β§ π₯ β On) β ((β
Β·o π΅)
+o (β
Β·o π₯)) = (β
+o
β
)) |
68 | | 0elon 6419 |
. . . . . . . . . . . . . . . 16
β’ β
β On |
69 | | oa0 8516 |
. . . . . . . . . . . . . . . 16
β’ (β
β On β (β
+o β
) = β
) |
70 | 68, 69 | ax-mp 5 |
. . . . . . . . . . . . . . 15
β’ (β
+o β
) = β
|
71 | 67, 70 | eqtr2di 2790 |
. . . . . . . . . . . . . 14
β’ ((π΅ β On β§ π₯ β On) β β
=
((β
Β·o π΅) +o (β
Β·o π₯))) |
72 | 64, 71 | eqtrd 2773 |
. . . . . . . . . . . . 13
β’ ((π΅ β On β§ π₯ β On) β (β
Β·o (π΅
+o π₯)) =
((β
Β·o π΅) +o (β
Β·o π₯))) |
73 | 61, 72 | sylan2 594 |
. . . . . . . . . . . 12
β’ ((π΅ β On β§ Lim π₯) β (β
Β·o (π΅
+o π₯)) =
((β
Β·o π΅) +o (β
Β·o π₯))) |
74 | 73 | ancoms 460 |
. . . . . . . . . . 11
β’ ((Lim
π₯ β§ π΅ β On) β (β
Β·o (π΅
+o π₯)) =
((β
Β·o π΅) +o (β
Β·o π₯))) |
75 | | oveq1 7416 |
. . . . . . . . . . . 12
β’ (π΄ = β
β (π΄ Β·o (π΅ +o π₯)) = (β
Β·o (π΅
+o π₯))) |
76 | | oveq1 7416 |
. . . . . . . . . . . . 13
β’ (π΄ = β
β (π΄ Β·o π΅) = (β
Β·o π΅)) |
77 | | oveq1 7416 |
. . . . . . . . . . . . 13
β’ (π΄ = β
β (π΄ Β·o π₯) = (β
Β·o π₯)) |
78 | 76, 77 | oveq12d 7427 |
. . . . . . . . . . . 12
β’ (π΄ = β
β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = ((β
Β·o π΅)
+o (β
Β·o π₯))) |
79 | 75, 78 | eqeq12d 2749 |
. . . . . . . . . . 11
β’ (π΄ = β
β ((π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) β (β
Β·o
(π΅ +o π₯)) = ((β
Β·o π΅)
+o (β
Β·o π₯)))) |
80 | 74, 79 | imbitrrid 245 |
. . . . . . . . . 10
β’ (π΄ = β
β ((Lim π₯ β§ π΅ β On) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)))) |
81 | 80 | expd 417 |
. . . . . . . . 9
β’ (π΄ = β
β (Lim π₯ β (π΅ β On β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))))) |
82 | 81 | com3r 87 |
. . . . . . . 8
β’ (π΅ β On β (π΄ = β
β (Lim π₯ β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))))) |
83 | 82 | imp 408 |
. . . . . . 7
β’ ((π΅ β On β§ π΄ = β
) β (Lim π₯ β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)))) |
84 | 83 | a1dd 50 |
. . . . . 6
β’ ((π΅ β On β§ π΄ = β
) β (Lim π₯ β (βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))))) |
85 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β π΅ β On) |
86 | 62 | ancoms 460 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π₯ β On β§ π΅ β On) β (π΅ +o π₯) β On) |
87 | | onelon 6390 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π΅ +o π₯) β On β§ π§ β (π΅ +o π₯)) β π§ β On) |
88 | 86, 87 | sylan 581 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β π§ β On) |
89 | | ontri1 6399 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π΅ β On β§ π§ β On) β (π΅ β π§ β Β¬ π§ β π΅)) |
90 | | oawordex 8557 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π΅ β On β§ π§ β On) β (π΅ β π§ β βπ£ β On (π΅ +o π£) = π§)) |
91 | 89, 90 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π΅ β On β§ π§ β On) β (Β¬ π§ β π΅ β βπ£ β On (π΅ +o π£) = π§)) |
92 | 85, 88, 91 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β (Β¬ π§ β π΅ β βπ£ β On (π΅ +o π£) = π§)) |
93 | | oaord 8547 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π£ β On β§ π₯ β On β§ π΅ β On) β (π£ β π₯ β (π΅ +o π£) β (π΅ +o π₯))) |
94 | 93 | 3expb 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π£ β On β§ (π₯ β On β§ π΅ β On)) β (π£ β π₯ β (π΅ +o π£) β (π΅ +o π₯))) |
95 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π΅ +o π£) = π§ β ((π΅ +o π£) β (π΅ +o π₯) β π§ β (π΅ +o π₯))) |
96 | 94, 95 | sylan9bb 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π£ β On β§ (π₯ β On β§ π΅ β On)) β§ (π΅ +o π£) = π§) β (π£ β π₯ β π§ β (π΅ +o π₯))) |
97 | | iba 529 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π΅ +o π£) = π§ β (π£ β π₯ β (π£ β π₯ β§ (π΅ +o π£) = π§))) |
98 | 97 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π£ β On β§ (π₯ β On β§ π΅ β On)) β§ (π΅ +o π£) = π§) β (π£ β π₯ β (π£ β π₯ β§ (π΅ +o π£) = π§))) |
99 | 96, 98 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π£ β On β§ (π₯ β On β§ π΅ β On)) β§ (π΅ +o π£) = π§) β (π§ β (π΅ +o π₯) β (π£ β π₯ β§ (π΅ +o π£) = π§))) |
100 | 99 | an32s 651 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π£ β On β§ (π΅ +o π£) = π§) β§ (π₯ β On β§ π΅ β On)) β (π§ β (π΅ +o π₯) β (π£ β π₯ β§ (π΅ +o π£) = π§))) |
101 | 100 | biimpcd 248 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π§ β (π΅ +o π₯) β (((π£ β On β§ (π΅ +o π£) = π§) β§ (π₯ β On β§ π΅ β On)) β (π£ β π₯ β§ (π΅ +o π£) = π§))) |
102 | 101 | exp4c 434 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π§ β (π΅ +o π₯) β (π£ β On β ((π΅ +o π£) = π§ β ((π₯ β On β§ π΅ β On) β (π£ β π₯ β§ (π΅ +o π£) = π§))))) |
103 | 102 | com4r 94 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π₯ β On β§ π΅ β On) β (π§ β (π΅ +o π₯) β (π£ β On β ((π΅ +o π£) = π§ β (π£ β π₯ β§ (π΅ +o π£) = π§))))) |
104 | 103 | imp 408 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β (π£ β On β ((π΅ +o π£) = π§ β (π£ β π₯ β§ (π΅ +o π£) = π§)))) |
105 | 104 | reximdvai 3166 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β (βπ£ β On (π΅ +o π£) = π§ β βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§))) |
106 | 92, 105 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β (Β¬ π§ β π΅ β βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§))) |
107 | 106 | orrd 862 |
. . . . . . . . . . . . . . . . 17
β’ (((π₯ β On β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β (π§ β π΅ β¨ βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§))) |
108 | 61, 107 | sylanl1 679 |
. . . . . . . . . . . . . . . 16
β’ (((Lim
π₯ β§ π΅ β On) β§ π§ β (π΅ +o π₯)) β (π§ β π΅ β¨ βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§))) |
109 | 108 | adantlrl 719 |
. . . . . . . . . . . . . . 15
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π§ β (π΅ +o π₯)) β (π§ β π΅ β¨ βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§))) |
110 | 109 | adantlr 714 |
. . . . . . . . . . . . . 14
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β§ π§ β (π΅ +o π₯)) β (π§ β π΅ β¨ βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§))) |
111 | | 0ellim 6428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (Lim
π₯ β β
β
π₯) |
112 | | om00el 8576 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π΄ β On β§ π₯ β On) β (β
β (π΄
Β·o π₯)
β (β
β π΄
β§ β
β π₯))) |
113 | 112 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π΄ β On β§ π₯ β On) β ((β
β π΄ β§ β
β π₯) β β
β (π΄
Β·o π₯))) |
114 | 111, 113 | sylan2i 607 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π΄ β On β§ π₯ β On) β ((β
β π΄ β§ Lim π₯) β β
β (π΄ Β·o π₯))) |
115 | 61, 114 | sylan2 594 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π΄ β On β§ Lim π₯) β ((β
β π΄ β§ Lim π₯) β β
β (π΄ Β·o π₯))) |
116 | 115 | exp4b 432 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π΄ β On β (Lim π₯ β (β
β π΄ β (Lim π₯ β β
β (π΄ Β·o π₯))))) |
117 | 116 | com4r 94 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (Lim
π₯ β (π΄ β On β (Lim π₯ β (β
β π΄ β β
β (π΄ Β·o π₯))))) |
118 | 117 | pm2.43a 54 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (Lim
π₯ β (π΄ β On β (β
β π΄ β β
β (π΄ Β·o π₯)))) |
119 | 118 | imp31 419 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((Lim
π₯ β§ π΄ β On) β§ β
β π΄) β β
β (π΄ Β·o π₯)) |
120 | 119 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((Lim
π₯ β§ π΄ β On) β§ β
β π΄) β (π§ β π΅ β β
β (π΄ Β·o π₯))) |
121 | 120 | adantlrr 720 |
. . . . . . . . . . . . . . . . . . 19
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β (π§ β π΅ β β
β (π΄ Β·o π₯))) |
122 | | omordi 8566 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π΅ β On β§ π΄ β On) β§ β
β
π΄) β (π§ β π΅ β (π΄ Β·o π§) β (π΄ Β·o π΅))) |
123 | 122 | ancom1s 652 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π΄ β On β§ π΅ β On) β§ β
β
π΄) β (π§ β π΅ β (π΄ Β·o π§) β (π΄ Β·o π΅))) |
124 | | onelss 6407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π΄ Β·o π΅) β On β ((π΄ Β·o π§) β (π΄ Β·o π΅) β (π΄ Β·o π§) β (π΄ Β·o π΅))) |
125 | 22 | sseq2d 4015 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π΄ Β·o π΅) β On β ((π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
) β (π΄ Β·o π§) β (π΄ Β·o π΅))) |
126 | 124, 125 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π΄ Β·o π΅) β On β ((π΄ Β·o π§) β (π΄ Β·o π΅) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
))) |
127 | 21, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π΄ β On β§ π΅ β On) β ((π΄ Β·o π§) β (π΄ Β·o π΅) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
))) |
128 | 127 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π΄ β On β§ π΅ β On) β§ β
β
π΄) β ((π΄ Β·o π§) β (π΄ Β·o π΅) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
))) |
129 | 123, 128 | syld 47 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π΄ β On β§ π΅ β On) β§ β
β
π΄) β (π§ β π΅ β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
))) |
130 | 129 | adantll 713 |
. . . . . . . . . . . . . . . . . . 19
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β (π§ β π΅ β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
))) |
131 | 121, 130 | jcad 514 |
. . . . . . . . . . . . . . . . . 18
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β (π§ β π΅ β (β
β (π΄ Β·o π₯) β§ (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
)))) |
132 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π€ = β
β ((π΄ Β·o π΅) +o π€) = ((π΄ Β·o π΅) +o β
)) |
133 | 132 | sseq2d 4015 |
. . . . . . . . . . . . . . . . . . 19
β’ (π€ = β
β ((π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o β
))) |
134 | 133 | rspcev 3613 |
. . . . . . . . . . . . . . . . . 18
β’ ((β
β (π΄
Β·o π₯)
β§ (π΄
Β·o π§)
β ((π΄
Β·o π΅)
+o β
)) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€)) |
135 | 131, 134 | syl6 35 |
. . . . . . . . . . . . . . . . 17
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β (π§ β π΅ β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
136 | 135 | adantrr 716 |
. . . . . . . . . . . . . . . 16
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β (π§ β π΅ β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
137 | | omordi 8566 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π₯ β On β§ π΄ β On) β§ β
β
π΄) β (π£ β π₯ β (π΄ Β·o π£) β (π΄ Β·o π₯))) |
138 | 61, 137 | sylanl1 679 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((Lim
π₯ β§ π΄ β On) β§ β
β π΄) β (π£ β π₯ β (π΄ Β·o π£) β (π΄ Β·o π₯))) |
139 | 138 | adantrd 493 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((Lim
π₯ β§ π΄ β On) β§ β
β π΄) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β (π΄ Β·o π£) β (π΄ Β·o π₯))) |
140 | 139 | adantrr 716 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((Lim
π₯ β§ π΄ β On) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β (π΄ Β·o π£) β (π΄ Β·o π₯))) |
141 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π¦ = π£ β (π΅ +o π¦) = (π΅ +o π£)) |
142 | 141 | oveq2d 7425 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π¦ = π£ β (π΄ Β·o (π΅ +o π¦)) = (π΄ Β·o (π΅ +o π£))) |
143 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π¦ = π£ β (π΄ Β·o π¦) = (π΄ Β·o π£)) |
144 | 143 | oveq2d 7425 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π¦ = π£ β ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£))) |
145 | 142, 144 | eqeq12d 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π¦ = π£ β ((π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
146 | 145 | rspccv 3610 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(βπ¦ β
π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π£ β π₯ β (π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
147 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π΅ +o π£) = π§ β (π΄ Β·o (π΅ +o π£)) = (π΄ Β·o π§)) |
148 | | eqeq1 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£)) β ((π΄ Β·o (π΅ +o π£)) = (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)) = (π΄ Β·o π§))) |
149 | 147, 148 | imbitrid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£)) β ((π΅ +o π£) = π§ β ((π΄ Β·o π΅) +o (π΄ Β·o π£)) = (π΄ Β·o π§))) |
150 | | eqimss2 4042 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π΄ Β·o π΅) +o (π΄ Β·o π£)) = (π΄ Β·o π§) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£))) |
151 | 149, 150 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£)) β ((π΅ +o π£) = π§ β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
152 | 151 | imim2i 16 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π£ β π₯ β (π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£))) β (π£ β π₯ β ((π΅ +o π£) = π§ β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£))))) |
153 | 152 | impd 412 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π£ β π₯ β (π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£))) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
154 | 146, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(βπ¦ β
π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
155 | 154 | ad2antll 728 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((Lim
π₯ β§ π΄ β On) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
156 | 140, 155 | jcad 514 |
. . . . . . . . . . . . . . . . . . 19
β’ (((Lim
π₯ β§ π΄ β On) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β ((π΄ Β·o π£) β (π΄ Β·o π₯) β§ (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£))))) |
157 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π€ = (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) = ((π΄ Β·o π΅) +o (π΄ Β·o π£))) |
158 | 157 | sseq2d 4015 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π€ = (π΄ Β·o π£) β ((π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
159 | 158 | rspcev 3613 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π΄ Β·o π£) β (π΄ Β·o π₯) β§ (π΄ Β·o π§) β ((π΄ Β·o π΅) +o (π΄ Β·o π£))) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€)) |
160 | 156, 159 | syl6 35 |
. . . . . . . . . . . . . . . . . 18
β’ (((Lim
π₯ β§ π΄ β On) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β ((π£ β π₯ β§ (π΅ +o π£) = π§) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
161 | 160 | rexlimdvw 3161 |
. . . . . . . . . . . . . . . . 17
β’ (((Lim
π₯ β§ π΄ β On) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β (βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
162 | 161 | adantlrr 720 |
. . . . . . . . . . . . . . . 16
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β (βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
163 | 136, 162 | jaod 858 |
. . . . . . . . . . . . . . 15
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β ((π§ β π΅ β¨ βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§)) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
164 | 163 | adantr 482 |
. . . . . . . . . . . . . 14
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β§ π§ β (π΅ +o π₯)) β ((π§ β π΅ β¨ βπ£ β On (π£ β π₯ β§ (π΅ +o π£) = π§)) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€))) |
165 | 110, 164 | mpd 15 |
. . . . . . . . . . . . 13
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β§ π§ β (π΅ +o π₯)) β βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€)) |
166 | 165 | ralrimiva 3147 |
. . . . . . . . . . . 12
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β βπ§ β (π΅ +o π₯)βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€)) |
167 | | iunss2 5053 |
. . . . . . . . . . . 12
β’
(βπ§ β
(π΅ +o π₯)βπ€ β (π΄ Β·o π₯)(π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€) β βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§) β βͺ
π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€)) |
168 | 166, 167 | syl 17 |
. . . . . . . . . . 11
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β βͺ π§ β (π΅ +o π₯)(π΄ Β·o π§) β βͺ
π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€)) |
169 | | omordlim 8577 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π΄ β On β§ (π₯ β V β§ Lim π₯)) β§ π€ β (π΄ Β·o π₯)) β βπ£ β π₯ π€ β (π΄ Β·o π£)) |
170 | 169 | ex 414 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π΄ β On β§ (π₯ β V β§ Lim π₯)) β (π€ β (π΄ Β·o π₯) β βπ£ β π₯ π€ β (π΄ Β·o π£))) |
171 | 59, 170 | mpanr1 702 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π΄ β On β§ Lim π₯) β (π€ β (π΄ Β·o π₯) β βπ£ β π₯ π€ β (π΄ Β·o π£))) |
172 | 171 | ancoms 460 |
. . . . . . . . . . . . . . . . . 18
β’ ((Lim
π₯ β§ π΄ β On) β (π€ β (π΄ Β·o π₯) β βπ£ β π₯ π€ β (π΄ Β·o π£))) |
173 | 172 | imp 408 |
. . . . . . . . . . . . . . . . 17
β’ (((Lim
π₯ β§ π΄ β On) β§ π€ β (π΄ Β·o π₯)) β βπ£ β π₯ π€ β (π΄ Β·o π£)) |
174 | 173 | adantlrr 720 |
. . . . . . . . . . . . . . . 16
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π€ β (π΄ Β·o π₯)) β βπ£ β π₯ π€ β (π΄ Β·o π£)) |
175 | 174 | adantlr 714 |
. . . . . . . . . . . . . . 15
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π€ β (π΄ Β·o π₯)) β βπ£ β π₯ π€ β (π΄ Β·o π£)) |
176 | | oaordi 8546 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π₯ β On β§ π΅ β On) β (π£ β π₯ β (π΅ +o π£) β (π΅ +o π₯))) |
177 | 61, 176 | sylan 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((Lim
π₯ β§ π΅ β On) β (π£ β π₯ β (π΅ +o π£) β (π΅ +o π₯))) |
178 | 177 | imp 408 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((Lim
π₯ β§ π΅ β On) β§ π£ β π₯) β (π΅ +o π£) β (π΅ +o π₯)) |
179 | 178 | adantlrl 719 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π£ β π₯) β (π΅ +o π£) β (π΅ +o π₯)) |
180 | 179 | a1d 25 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β (π΅ +o π£) β (π΅ +o π₯))) |
181 | 180 | adantlr 714 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β (π΅ +o π£) β (π΅ +o π₯))) |
182 | | limord 6425 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (Lim
π₯ β Ord π₯) |
183 | | ordelon 6389 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((Ord
π₯ β§ π£ β π₯) β π£ β On) |
184 | 182, 183 | sylan 581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((Lim
π₯ β§ π£ β π₯) β π£ β On) |
185 | | omcl 8536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π΄ β On β§ π£ β On) β (π΄ Β·o π£) β On) |
186 | 185 | ancoms 460 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π£ β On β§ π΄ β On) β (π΄ Β·o π£) β On) |
187 | 186 | adantrr 716 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π£ β On β§ (π΄ β On β§ π΅ β On)) β (π΄ Β·o π£) β On) |
188 | 21 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π£ β On β§ (π΄ β On β§ π΅ β On)) β (π΄ Β·o π΅) β On) |
189 | | oaordi 8546 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π΄ Β·o π£) β On β§ (π΄ Β·o π΅) β On) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
190 | 187, 188,
189 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π£ β On β§ (π΄ β On β§ π΅ β On)) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
191 | 184, 190 | sylan 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((Lim
π₯ β§ π£ β π₯) β§ (π΄ β On β§ π΅ β On)) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
192 | 191 | an32s 651 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
193 | 192 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
194 | 145 | rspccva 3612 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((βπ¦ β
π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β§ π£ β π₯) β (π΄ Β·o (π΅ +o π£)) = ((π΄ Β·o π΅) +o (π΄ Β·o π£))) |
195 | 194 | eleq2d 2820 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((βπ¦ β
π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β§ π£ β π₯) β (((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
196 | 195 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)) β ((π΄ Β·o π΅) +o π€) β ((π΄ Β·o π΅) +o (π΄ Β·o π£)))) |
197 | 193, 196 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)))) |
198 | | oacl 8535 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π΅ β On β§ π£ β On) β (π΅ +o π£) β On) |
199 | 198 | ancoms 460 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π£ β On β§ π΅ β On) β (π΅ +o π£) β On) |
200 | | omcl 8536 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π΄ β On β§ (π΅ +o π£) β On) β (π΄ Β·o (π΅ +o π£)) β On) |
201 | 199, 200 | sylan2 594 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π΄ β On β§ (π£ β On β§ π΅ β On)) β (π΄ Β·o (π΅ +o π£)) β On) |
202 | 201 | an12s 648 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π£ β On β§ (π΄ β On β§ π΅ β On)) β (π΄ Β·o (π΅ +o π£)) β On) |
203 | 184, 202 | sylan 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((Lim
π₯ β§ π£ β π₯) β§ (π΄ β On β§ π΅ β On)) β (π΄ Β·o (π΅ +o π£)) β On) |
204 | 203 | an32s 651 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π£ β π₯) β (π΄ Β·o (π΅ +o π£)) β On) |
205 | | onelss 6407 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π΄ Β·o (π΅ +o π£)) β On β (((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)))) |
206 | 204, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ π£ β π₯) β (((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)))) |
207 | 206 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)))) |
208 | 197, 207 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)))) |
209 | 181, 208 | jcad 514 |
. . . . . . . . . . . . . . . . . 18
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β ((π΅ +o π£) β (π΅ +o π₯) β§ ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£))))) |
210 | | oveq2 7417 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π§ = (π΅ +o π£) β (π΄ Β·o π§) = (π΄ Β·o (π΅ +o π£))) |
211 | 210 | sseq2d 4015 |
. . . . . . . . . . . . . . . . . . 19
β’ (π§ = (π΅ +o π£) β (((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§) β ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£)))) |
212 | 211 | rspcev 3613 |
. . . . . . . . . . . . . . . . . 18
β’ (((π΅ +o π£) β (π΅ +o π₯) β§ ((π΄ Β·o π΅) +o π€) β (π΄ Β·o (π΅ +o π£))) β βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§)) |
213 | 209, 212 | syl6 35 |
. . . . . . . . . . . . . . . . 17
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π£ β π₯) β (π€ β (π΄ Β·o π£) β βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§))) |
214 | 213 | rexlimdva 3156 |
. . . . . . . . . . . . . . . 16
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β (βπ£ β π₯ π€ β (π΄ Β·o π£) β βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§))) |
215 | 214 | adantr 482 |
. . . . . . . . . . . . . . 15
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π€ β (π΄ Β·o π₯)) β (βπ£ β π₯ π€ β (π΄ Β·o π£) β βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§))) |
216 | 175, 215 | mpd 15 |
. . . . . . . . . . . . . 14
β’ ((((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β§ π€ β (π΄ Β·o π₯)) β βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§)) |
217 | 216 | ralrimiva 3147 |
. . . . . . . . . . . . 13
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β βπ€ β (π΄ Β·o π₯)βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§)) |
218 | | iunss2 5053 |
. . . . . . . . . . . . 13
β’
(βπ€ β
(π΄ Β·o
π₯)βπ§ β (π΅ +o π₯)((π΄ Β·o π΅) +o π€) β (π΄ Β·o π§) β βͺ
π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€) β βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . . 12
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦))) β βͺ π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€) β βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
220 | 219 | adantrl 715 |
. . . . . . . . . . 11
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β βͺ π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€) β βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
221 | 168, 220 | eqssd 4000 |
. . . . . . . . . 10
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β βͺ π§ β (π΅ +o π₯)(π΄ Β·o π§) = βͺ π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€)) |
222 | | oalimcl 8560 |
. . . . . . . . . . . . . . . 16
β’ ((π΅ β On β§ (π₯ β V β§ Lim π₯)) β Lim (π΅ +o π₯)) |
223 | 59, 222 | mpanr1 702 |
. . . . . . . . . . . . . . 15
β’ ((π΅ β On β§ Lim π₯) β Lim (π΅ +o π₯)) |
224 | 223 | ancoms 460 |
. . . . . . . . . . . . . 14
β’ ((Lim
π₯ β§ π΅ β On) β Lim (π΅ +o π₯)) |
225 | 224 | anim2i 618 |
. . . . . . . . . . . . 13
β’ ((π΄ β On β§ (Lim π₯ β§ π΅ β On)) β (π΄ β On β§ Lim (π΅ +o π₯))) |
226 | 225 | an12s 648 |
. . . . . . . . . . . 12
β’ ((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β (π΄ β On β§ Lim (π΅ +o π₯))) |
227 | | ovex 7442 |
. . . . . . . . . . . . 13
β’ (π΅ +o π₯) β V |
228 | | omlim 8533 |
. . . . . . . . . . . . 13
β’ ((π΄ β On β§ ((π΅ +o π₯) β V β§ Lim (π΅ +o π₯))) β (π΄ Β·o (π΅ +o π₯)) = βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
229 | 227, 228 | mpanr1 702 |
. . . . . . . . . . . 12
β’ ((π΄ β On β§ Lim (π΅ +o π₯)) β (π΄ Β·o (π΅ +o π₯)) = βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
230 | 226, 229 | syl 17 |
. . . . . . . . . . 11
β’ ((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β (π΄ Β·o (π΅ +o π₯)) = βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
231 | 230 | adantr 482 |
. . . . . . . . . 10
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β (π΄ Β·o (π΅ +o π₯)) = βͺ
π§ β (π΅ +o π₯)(π΄ Β·o π§)) |
232 | 21 | ad2antlr 726 |
. . . . . . . . . . . 12
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β (π΄ Β·o π΅) β On) |
233 | 59 | jctl 525 |
. . . . . . . . . . . . . . . 16
β’ (Lim
π₯ β (π₯ β V β§ Lim π₯)) |
234 | 233 | anim1ci 617 |
. . . . . . . . . . . . . . 15
β’ ((Lim
π₯ β§ π΄ β On) β (π΄ β On β§ (π₯ β V β§ Lim π₯))) |
235 | | omlimcl 8578 |
. . . . . . . . . . . . . . 15
β’ (((π΄ β On β§ (π₯ β V β§ Lim π₯)) β§ β
β π΄) β Lim (π΄ Β·o π₯)) |
236 | 234, 235 | sylan 581 |
. . . . . . . . . . . . . 14
β’ (((Lim
π₯ β§ π΄ β On) β§ β
β π΄) β Lim (π΄ Β·o π₯)) |
237 | 236 | adantlrr 720 |
. . . . . . . . . . . . 13
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β Lim (π΄ Β·o π₯)) |
238 | | ovex 7442 |
. . . . . . . . . . . . 13
β’ (π΄ Β·o π₯) β V |
239 | 237, 238 | jctil 521 |
. . . . . . . . . . . 12
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β ((π΄ Β·o π₯) β V β§ Lim (π΄ Β·o π₯))) |
240 | | oalim 8532 |
. . . . . . . . . . . 12
β’ (((π΄ Β·o π΅) β On β§ ((π΄ Β·o π₯) β V β§ Lim (π΄ Β·o π₯))) β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = βͺ
π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€)) |
241 | 232, 239,
240 | syl2anc 585 |
. . . . . . . . . . 11
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ β
β π΄) β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = βͺ
π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€)) |
242 | 241 | adantrr 716 |
. . . . . . . . . 10
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β ((π΄ Β·o π΅) +o (π΄ Β·o π₯)) = βͺ
π€ β (π΄ Β·o π₯)((π΄ Β·o π΅) +o π€)) |
243 | 221, 231,
242 | 3eqtr4d 2783 |
. . . . . . . . 9
β’ (((Lim
π₯ β§ (π΄ β On β§ π΅ β On)) β§ (β
β π΄ β§ βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)))) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))) |
244 | 243 | exp43 438 |
. . . . . . . 8
β’ (Lim
π₯ β ((π΄ β On β§ π΅ β On) β (β
β π΄ β
(βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)))))) |
245 | 244 | com3l 89 |
. . . . . . 7
β’ ((π΄ β On β§ π΅ β On) β (β
β π΄ β (Lim π₯ β (βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯)))))) |
246 | 245 | imp 408 |
. . . . . 6
β’ (((π΄ β On β§ π΅ β On) β§ β
β
π΄) β (Lim π₯ β (βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))))) |
247 | 84, 246 | oe0lem 8513 |
. . . . 5
β’ ((π΄ β On β§ π΅ β On) β (Lim π₯ β (βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))))) |
248 | 247 | com12 32 |
. . . 4
β’ (Lim
π₯ β ((π΄ β On β§ π΅ β On) β
(βπ¦ β π₯ (π΄ Β·o (π΅ +o π¦)) = ((π΄ Β·o π΅) +o (π΄ Β·o π¦)) β (π΄ Β·o (π΅ +o π₯)) = ((π΄ Β·o π΅) +o (π΄ Β·o π₯))))) |
249 | 5, 10, 15, 20, 30, 58, 248 | tfinds3 7854 |
. . 3
β’ (πΆ β On β ((π΄ β On β§ π΅ β On) β (π΄ Β·o (π΅ +o πΆ)) = ((π΄ Β·o π΅) +o (π΄ Β·o πΆ)))) |
250 | 249 | expdcom 416 |
. 2
β’ (π΄ β On β (π΅ β On β (πΆ β On β (π΄ Β·o (π΅ +o πΆ)) = ((π΄ Β·o π΅) +o (π΄ Β·o πΆ))))) |
251 | 250 | 3imp 1112 |
1
β’ ((π΄ β On β§ π΅ β On β§ πΆ β On) β (π΄ Β·o (π΅ +o πΆ)) = ((π΄ Β·o π΅) +o (π΄ Β·o πΆ))) |