![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaprlem | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 11031 | . . . . . 6 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5747 | . . . . 5 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | 2 | simpld 493 | . . . 4 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
4 | ltexpri 11076 | . . . . 5 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
5 | addclpr 11051 | . . . . . . . 8 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
6 | ltaddpr 11067 | . . . . . . . . . 10 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
7 | addasspr 11055 | . . . . . . . . . . . 12 ⊢ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)) | |
8 | oveq2 7434 | . . . . . . . . . . . 12 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
9 | 7, 8 | eqtrid 2780 | . . . . . . . . . . 11 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
10 | 9 | breq2d 5164 | . . . . . . . . . 10 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
11 | 6, 10 | imbitrid 243 | . . . . . . . . 9 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
12 | 11 | expd 414 | . . . . . . . 8 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
13 | 5, 12 | syl5 34 | . . . . . . 7 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
14 | 13 | com3r 87 | . . . . . 6 ⊢ (𝑥 ∈ P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
15 | 14 | rexlimiv 3145 | . . . . 5 ⊢ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
16 | 4, 15 | syl 17 | . . . 4 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
17 | 3, 16 | sylan2i 604 | . . 3 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
18 | 17 | expd 414 | . 2 ⊢ (𝐴<P 𝐵 → (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
19 | 18 | pm2.43b 55 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 class class class wbr 5152 (class class class)co 7426 Pcnp 10892 +P cpp 10894 <P cltp 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-oadd 8499 df-omul 8500 df-er 8733 df-ni 10905 df-pli 10906 df-mi 10907 df-lti 10908 df-plpq 10941 df-mpq 10942 df-ltpq 10943 df-enq 10944 df-nq 10945 df-erq 10946 df-plq 10947 df-mq 10948 df-1nq 10949 df-rq 10950 df-ltnq 10951 df-np 11014 df-plp 11016 df-ltp 11018 |
This theorem is referenced by: ltapr 11078 |
Copyright terms: Public domain | W3C validator |