![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaprlem | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 11067 | . . . . . 6 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5765 | . . . . 5 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | 2 | simpld 494 | . . . 4 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
4 | ltexpri 11112 | . . . . 5 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
5 | addclpr 11087 | . . . . . . . 8 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
6 | ltaddpr 11103 | . . . . . . . . . 10 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
7 | addasspr 11091 | . . . . . . . . . . . 12 ⊢ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)) | |
8 | oveq2 7456 | . . . . . . . . . . . 12 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
9 | 7, 8 | eqtrid 2792 | . . . . . . . . . . 11 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
10 | 9 | breq2d 5178 | . . . . . . . . . 10 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
11 | 6, 10 | imbitrid 244 | . . . . . . . . 9 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
12 | 11 | expd 415 | . . . . . . . 8 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
13 | 5, 12 | syl5 34 | . . . . . . 7 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
14 | 13 | com3r 87 | . . . . . 6 ⊢ (𝑥 ∈ P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
15 | 14 | rexlimiv 3154 | . . . . 5 ⊢ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
16 | 4, 15 | syl 17 | . . . 4 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
17 | 3, 16 | sylan2i 605 | . . 3 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
18 | 17 | expd 415 | . 2 ⊢ (𝐴<P 𝐵 → (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
19 | 18 | pm2.43b 55 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 (class class class)co 7448 Pcnp 10928 +P cpp 10930 <P cltp 10932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ni 10941 df-pli 10942 df-mi 10943 df-lti 10944 df-plpq 10977 df-mpq 10978 df-ltpq 10979 df-enq 10980 df-nq 10981 df-erq 10982 df-plq 10983 df-mq 10984 df-1nq 10985 df-rq 10986 df-ltnq 10987 df-np 11050 df-plp 11052 df-ltp 11054 |
This theorem is referenced by: ltapr 11114 |
Copyright terms: Public domain | W3C validator |