MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Structured version   Visualization version   GIF version

Theorem ltaprlem 11063
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 11017 . . . . . 6 <P ⊆ (P × P)
21brel 5724 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 494 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexpri 11062 . . . . 5 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
5 addclpr 11037 . . . . . . . 8 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
6 ltaddpr 11053 . . . . . . . . . 10 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
7 addasspr 11041 . . . . . . . . . . . 12 ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))
8 oveq2 7418 . . . . . . . . . . . 12 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
97, 8eqtrid 2783 . . . . . . . . . . 11 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
109breq2d 5136 . . . . . . . . . 10 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
116, 10imbitrid 244 . . . . . . . . 9 ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1211expd 415 . . . . . . . 8 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
135, 12syl5 34 . . . . . . 7 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1413com3r 87 . . . . . 6 (𝑥P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1514rexlimiv 3135 . . . . 5 (∃𝑥P (𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
164, 15syl 17 . . . 4 (𝐴<P 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
173, 16sylan2i 606 . . 3 (𝐴<P 𝐵 → ((𝐶P𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1817expd 415 . 2 (𝐴<P 𝐵 → (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918pm2.43b 55 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  (class class class)co 7410  Pcnp 10878   +P cpp 10880  <P cltp 10882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-plp 11002  df-ltp 11004
This theorem is referenced by:  ltapr  11064
  Copyright terms: Public domain W3C validator