MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Structured version   Visualization version   GIF version

Theorem ltaprlem 11081
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 11035 . . . . . 6 <P ⊆ (P × P)
21brel 5753 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 494 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexpri 11080 . . . . 5 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
5 addclpr 11055 . . . . . . . 8 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
6 ltaddpr 11071 . . . . . . . . . 10 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
7 addasspr 11059 . . . . . . . . . . . 12 ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))
8 oveq2 7438 . . . . . . . . . . . 12 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
97, 8eqtrid 2786 . . . . . . . . . . 11 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
109breq2d 5159 . . . . . . . . . 10 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
116, 10imbitrid 244 . . . . . . . . 9 ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1211expd 415 . . . . . . . 8 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
135, 12syl5 34 . . . . . . 7 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1413com3r 87 . . . . . 6 (𝑥P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1514rexlimiv 3145 . . . . 5 (∃𝑥P (𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
164, 15syl 17 . . . 4 (𝐴<P 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
173, 16sylan2i 606 . . 3 (𝐴<P 𝐵 → ((𝐶P𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1817expd 415 . 2 (𝐴<P 𝐵 → (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918pm2.43b 55 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wrex 3067   class class class wbr 5147  (class class class)co 7430  Pcnp 10896   +P cpp 10898  <P cltp 10900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-ni 10909  df-pli 10910  df-mi 10911  df-lti 10912  df-plpq 10945  df-mpq 10946  df-ltpq 10947  df-enq 10948  df-nq 10949  df-erq 10950  df-plq 10951  df-mq 10952  df-1nq 10953  df-rq 10954  df-ltnq 10955  df-np 11018  df-plp 11020  df-ltp 11022
This theorem is referenced by:  ltapr  11082
  Copyright terms: Public domain W3C validator