![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaprlem | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 10022 | . . . . . 6 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5308 | . . . . 5 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | 2 | simpld 482 | . . . 4 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
4 | ltexpri 10067 | . . . . 5 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
5 | addclpr 10042 | . . . . . . . 8 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
6 | ltaddpr 10058 | . . . . . . . . . 10 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
7 | addasspr 10046 | . . . . . . . . . . . 12 ⊢ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)) | |
8 | oveq2 6801 | . . . . . . . . . . . 12 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
9 | 7, 8 | syl5eq 2817 | . . . . . . . . . . 11 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
10 | 9 | breq2d 4798 | . . . . . . . . . 10 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
11 | 6, 10 | syl5ib 234 | . . . . . . . . 9 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
12 | 11 | expd 400 | . . . . . . . 8 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
13 | 5, 12 | syl5 34 | . . . . . . 7 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
14 | 13 | com3r 87 | . . . . . 6 ⊢ (𝑥 ∈ P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
15 | 14 | rexlimiv 3175 | . . . . 5 ⊢ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
16 | 4, 15 | syl 17 | . . . 4 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
17 | 3, 16 | sylan2i 593 | . . 3 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
18 | 17 | expd 400 | . 2 ⊢ (𝐴<P 𝐵 → (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
19 | 18 | pm2.43b 55 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 class class class wbr 4786 (class class class)co 6793 Pcnp 9883 +P cpp 9885 <P cltp 9887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-omul 7718 df-er 7896 df-ni 9896 df-pli 9897 df-mi 9898 df-lti 9899 df-plpq 9932 df-mpq 9933 df-ltpq 9934 df-enq 9935 df-nq 9936 df-erq 9937 df-plq 9938 df-mq 9939 df-1nq 9940 df-rq 9941 df-ltnq 9942 df-np 10005 df-plp 10007 df-ltp 10009 |
This theorem is referenced by: ltapr 10069 |
Copyright terms: Public domain | W3C validator |