| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltaprlem | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelpr 10889 | . . . . . 6 ⊢ <P ⊆ (P × P) | |
| 2 | 1 | brel 5679 | . . . . 5 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 3 | 2 | simpld 494 | . . . 4 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
| 4 | ltexpri 10934 | . . . . 5 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
| 5 | addclpr 10909 | . . . . . . . 8 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
| 6 | ltaddpr 10925 | . . . . . . . . . 10 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
| 7 | addasspr 10913 | . . . . . . . . . . . 12 ⊢ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)) | |
| 8 | oveq2 7354 | . . . . . . . . . . . 12 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
| 9 | 7, 8 | eqtrid 2778 | . . . . . . . . . . 11 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
| 10 | 9 | breq2d 5101 | . . . . . . . . . 10 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| 11 | 6, 10 | imbitrid 244 | . . . . . . . . 9 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| 12 | 11 | expd 415 | . . . . . . . 8 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
| 13 | 5, 12 | syl5 34 | . . . . . . 7 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
| 14 | 13 | com3r 87 | . . . . . 6 ⊢ (𝑥 ∈ P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
| 15 | 14 | rexlimiv 3126 | . . . . 5 ⊢ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| 16 | 4, 15 | syl 17 | . . . 4 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| 17 | 3, 16 | sylan2i 606 | . . 3 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| 18 | 17 | expd 415 | . 2 ⊢ (𝐴<P 𝐵 → (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
| 19 | 18 | pm2.43b 55 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5089 (class class class)co 7346 Pcnp 10750 +P cpp 10752 <P cltp 10754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-plp 10874 df-ltp 10876 |
| This theorem is referenced by: ltapr 10936 |
| Copyright terms: Public domain | W3C validator |