![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaprlem | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 11035 | . . . . . 6 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5753 | . . . . 5 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | 2 | simpld 494 | . . . 4 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
4 | ltexpri 11080 | . . . . 5 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
5 | addclpr 11055 | . . . . . . . 8 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
6 | ltaddpr 11071 | . . . . . . . . . 10 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
7 | addasspr 11059 | . . . . . . . . . . . 12 ⊢ ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)) | |
8 | oveq2 7438 | . . . . . . . . . . . 12 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
9 | 7, 8 | eqtrid 2786 | . . . . . . . . . . 11 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
10 | 9 | breq2d 5159 | . . . . . . . . . 10 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
11 | 6, 10 | imbitrid 244 | . . . . . . . . 9 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
12 | 11 | expd 415 | . . . . . . . 8 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
13 | 5, 12 | syl5 34 | . . . . . . 7 ⊢ ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝑥 ∈ P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
14 | 13 | com3r 87 | . . . . . 6 ⊢ (𝑥 ∈ P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
15 | 14 | rexlimiv 3145 | . . . . 5 ⊢ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
16 | 4, 15 | syl 17 | . . . 4 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
17 | 3, 16 | sylan2i 606 | . . 3 ⊢ (𝐴<P 𝐵 → ((𝐶 ∈ P ∧ 𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
18 | 17 | expd 415 | . 2 ⊢ (𝐴<P 𝐵 → (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))) |
19 | 18 | pm2.43b 55 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 class class class wbr 5147 (class class class)co 7430 Pcnp 10896 +P cpp 10898 <P cltp 10900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-omul 8509 df-er 8743 df-ni 10909 df-pli 10910 df-mi 10911 df-lti 10912 df-plpq 10945 df-mpq 10946 df-ltpq 10947 df-enq 10948 df-nq 10949 df-erq 10950 df-plq 10951 df-mq 10952 df-1nq 10953 df-rq 10954 df-ltnq 10955 df-np 11018 df-plp 11020 df-ltp 11022 |
This theorem is referenced by: ltapr 11082 |
Copyright terms: Public domain | W3C validator |