MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaprlem Structured version   Visualization version   GIF version

Theorem ltaprlem 11041
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 10995 . . . . . 6 <P ⊆ (P × P)
21brel 5734 . . . . 5 (𝐴<P 𝐵 → (𝐴P𝐵P))
32simpld 494 . . . 4 (𝐴<P 𝐵𝐴P)
4 ltexpri 11040 . . . . 5 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
5 addclpr 11015 . . . . . . . 8 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
6 ltaddpr 11031 . . . . . . . . . 10 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
7 addasspr 11019 . . . . . . . . . . . 12 ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))
8 oveq2 7413 . . . . . . . . . . . 12 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
97, 8eqtrid 2778 . . . . . . . . . . 11 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
109breq2d 5153 . . . . . . . . . 10 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥) ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
116, 10imbitrid 243 . . . . . . . . 9 ((𝐴 +P 𝑥) = 𝐵 → (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1211expd 415 . . . . . . . 8 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶 +P 𝐴) ∈ P → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
135, 12syl5 34 . . . . . . 7 ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝑥P → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1413com3r 87 . . . . . 6 (𝑥P → ((𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1514rexlimiv 3142 . . . . 5 (∃𝑥P (𝐴 +P 𝑥) = 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
164, 15syl 17 . . . 4 (𝐴<P 𝐵 → ((𝐶P𝐴P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
173, 16sylan2i 605 . . 3 (𝐴<P 𝐵 → ((𝐶P𝐴<P 𝐵) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
1817expd 415 . 2 (𝐴<P 𝐵 → (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))))
1918pm2.43b 55 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wrex 3064   class class class wbr 5141  (class class class)co 7405  Pcnp 10856   +P cpp 10858  <P cltp 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-omul 8472  df-er 8705  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-mpq 10906  df-ltpq 10907  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-mq 10912  df-1nq 10913  df-rq 10914  df-ltnq 10915  df-np 10978  df-plp 10980  df-ltp 10982
This theorem is referenced by:  ltapr  11042
  Copyright terms: Public domain W3C validator