| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3410 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3907 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3907 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-dif 3901 |
| This theorem is referenced by: difeq12 4070 difeq1i 4071 difeq1d 4074 symdifeq1 4204 uneqdifeq 4442 hartogslem1 9439 kmlem9 10061 kmlem11 10063 kmlem12 10064 isfin1a 10194 fin1a2lem13 10314 fundmge2nop0 14416 incexclem 15750 coprmprod 16579 coprmproddvds 16581 ismri 17545 f1otrspeq 19367 pmtrval 19371 pmtrfrn 19378 symgsssg 19387 symgfisg 19388 symggen 19390 psgnunilem1 19413 psgnunilem5 19414 psgneldm 19423 ablfac1eulem 19994 sdrgacs 20725 islbs 21019 lbsextlem1 21104 lbsextlem2 21105 lbsextlem3 21106 lbsextlem4 21107 cofipsgn 21539 selvffval 22067 submafval 22514 m1detdiag 22532 lpval 23074 2ndcdisj 23391 isufil 23838 ptcmplem2 23988 mblsplit 25480 voliunlem3 25500 ig1pval 26128 nbgr2vtx1edg 29349 nbuhgr2vtx1edgb 29351 nb3grprlem2 29380 uvtx01vtx 29396 cplgr1v 29429 dfconngr1 30189 isconngr1 30191 isfrgr 30261 frgr1v 30272 nfrgr2v 30273 frgr3v 30276 1vwmgr 30277 3vfriswmgr 30279 difeq 32519 symgcntz 33095 tocycval 33118 extvval 33624 sigaval 34196 issiga 34197 issgon 34208 isros 34253 unelros 34256 difelros 34257 inelsros 34263 diffiunisros 34264 rossros 34265 inelcarsg 34396 carsgclctunlem2 34404 probun 34504 ballotlemgval 34609 cvmscbv 35374 cvmsi 35381 cvmsval 35382 poimirlem4 37737 dssmapfvd 44174 compne 44597 dvmptfprod 46105 caragensplit 46660 vonvolmbllem 46820 vonvolmbl 46821 ldepsnlinc 48670 eenglngeehlnm 48901 |
| Copyright terms: Public domain | W3C validator |