| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3430 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3935 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3935 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-dif 3929 |
| This theorem is referenced by: difeq12 4096 difeq1i 4097 difeq1d 4100 symdifeq1 4230 uneqdifeq 4468 hartogslem1 9554 kmlem9 10171 kmlem11 10173 kmlem12 10174 isfin1a 10304 fin1a2lem13 10424 fundmge2nop0 14518 incexclem 15850 coprmprod 16678 coprmproddvds 16680 ismri 17641 f1otrspeq 19426 pmtrval 19430 pmtrfrn 19437 symgsssg 19446 symgfisg 19447 symggen 19449 psgnunilem1 19472 psgnunilem5 19473 psgneldm 19482 ablfac1eulem 20053 sdrgacs 20759 islbs 21032 lbsextlem1 21117 lbsextlem2 21118 lbsextlem3 21119 lbsextlem4 21120 cofipsgn 21551 selvffval 22069 submafval 22515 m1detdiag 22533 lpval 23075 2ndcdisj 23392 isufil 23839 ptcmplem2 23989 mblsplit 25483 voliunlem3 25503 ig1pval 26131 nbgr2vtx1edg 29275 nbuhgr2vtx1edgb 29277 nb3grprlem2 29306 uvtx01vtx 29322 cplgr1v 29355 dfconngr1 30115 isconngr1 30117 isfrgr 30187 frgr1v 30198 nfrgr2v 30199 frgr3v 30202 1vwmgr 30203 3vfriswmgr 30205 difeq 32445 symgcntz 33042 tocycval 33065 sigaval 34088 issiga 34089 issgon 34100 isros 34145 unelros 34148 difelros 34149 inelsros 34155 diffiunisros 34156 rossros 34157 inelcarsg 34289 carsgclctunlem2 34297 probun 34397 ballotlemgval 34502 cvmscbv 35226 cvmsi 35233 cvmsval 35234 poimirlem4 37594 dssmapfvd 43988 compne 44413 dvmptfprod 45922 caragensplit 46477 vonvolmbllem 46637 vonvolmbl 46638 ldepsnlinc 48432 eenglngeehlnm 48667 |
| Copyright terms: Public domain | W3C validator |