Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3408 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3892 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3892 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-dif 3886 |
This theorem is referenced by: difeq12 4048 difeq1i 4049 difeq1d 4052 symdifeq1 4175 uneqdifeq 4420 hartogslem1 9231 kmlem9 9845 kmlem11 9847 kmlem12 9848 isfin1a 9979 fin1a2lem13 10099 fundmge2nop0 14134 incexclem 15476 coprmprod 16294 coprmproddvds 16296 ismri 17257 f1otrspeq 18970 pmtrval 18974 pmtrfrn 18981 symgsssg 18990 symgfisg 18991 symggen 18993 psgnunilem1 19016 psgnunilem5 19017 psgneldm 19026 ablfac1eulem 19590 sdrgacs 19984 islbs 20253 lbsextlem1 20335 lbsextlem2 20336 lbsextlem3 20337 lbsextlem4 20338 cofipsgn 20710 selvffval 21236 submafval 21636 m1detdiag 21654 lpval 22198 2ndcdisj 22515 isufil 22962 ptcmplem2 23112 mblsplit 24601 voliunlem3 24621 ig1pval 25242 nbgr2vtx1edg 27620 nbuhgr2vtx1edgb 27622 nbgr0vtx 27626 nb3grprlem2 27651 uvtx01vtx 27667 cplgr1v 27700 dfconngr1 28453 isconngr1 28455 isfrgr 28525 frgr1v 28536 nfrgr2v 28537 frgr3v 28540 1vwmgr 28541 3vfriswmgr 28543 difeq 30766 symgcntz 31256 tocycval 31277 sigaval 31979 issiga 31980 issgon 31991 isros 32036 unelros 32039 difelros 32040 inelsros 32046 diffiunisros 32047 rossros 32048 inelcarsg 32178 carsgclctunlem2 32186 probun 32286 ballotlemgval 32390 cvmscbv 33120 cvmsi 33127 cvmsval 33128 poimirlem4 35708 dssmapfvd 41514 compne 41948 dvmptfprod 43376 caragensplit 43928 vonvolmbllem 44088 vonvolmbl 44089 ldepsnlinc 45737 eenglngeehlnm 45973 |
Copyright terms: Public domain | W3C validator |