![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3458 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3985 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3985 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-dif 3979 |
This theorem is referenced by: difeq12 4144 difeq1i 4145 difeq1d 4148 symdifeq1 4274 uneqdifeq 4516 hartogslem1 9611 kmlem9 10228 kmlem11 10230 kmlem12 10231 isfin1a 10361 fin1a2lem13 10481 fundmge2nop0 14551 incexclem 15884 coprmprod 16708 coprmproddvds 16710 ismri 17689 f1otrspeq 19489 pmtrval 19493 pmtrfrn 19500 symgsssg 19509 symgfisg 19510 symggen 19512 psgnunilem1 19535 psgnunilem5 19536 psgneldm 19545 ablfac1eulem 20116 sdrgacs 20824 islbs 21098 lbsextlem1 21183 lbsextlem2 21184 lbsextlem3 21185 lbsextlem4 21186 cofipsgn 21634 selvffval 22160 submafval 22606 m1detdiag 22624 lpval 23168 2ndcdisj 23485 isufil 23932 ptcmplem2 24082 mblsplit 25586 voliunlem3 25606 ig1pval 26235 nbgr2vtx1edg 29385 nbuhgr2vtx1edgb 29387 nb3grprlem2 29416 uvtx01vtx 29432 cplgr1v 29465 dfconngr1 30220 isconngr1 30222 isfrgr 30292 frgr1v 30303 nfrgr2v 30304 frgr3v 30307 1vwmgr 30308 3vfriswmgr 30310 difeq 32548 symgcntz 33078 tocycval 33101 sigaval 34075 issiga 34076 issgon 34087 isros 34132 unelros 34135 difelros 34136 inelsros 34142 diffiunisros 34143 rossros 34144 inelcarsg 34276 carsgclctunlem2 34284 probun 34384 ballotlemgval 34488 cvmscbv 35226 cvmsi 35233 cvmsval 35234 poimirlem4 37584 dssmapfvd 43979 compne 44410 dvmptfprod 45866 caragensplit 46421 vonvolmbllem 46581 vonvolmbl 46582 ldepsnlinc 48237 eenglngeehlnm 48473 |
Copyright terms: Public domain | W3C validator |