| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3420 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3923 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3923 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-dif 3917 |
| This theorem is referenced by: difeq12 4084 difeq1i 4085 difeq1d 4088 symdifeq1 4218 uneqdifeq 4456 hartogslem1 9495 kmlem9 10112 kmlem11 10114 kmlem12 10115 isfin1a 10245 fin1a2lem13 10365 fundmge2nop0 14467 incexclem 15802 coprmprod 16631 coprmproddvds 16633 ismri 17592 f1otrspeq 19377 pmtrval 19381 pmtrfrn 19388 symgsssg 19397 symgfisg 19398 symggen 19400 psgnunilem1 19423 psgnunilem5 19424 psgneldm 19433 ablfac1eulem 20004 sdrgacs 20710 islbs 20983 lbsextlem1 21068 lbsextlem2 21069 lbsextlem3 21070 lbsextlem4 21071 cofipsgn 21502 selvffval 22020 submafval 22466 m1detdiag 22484 lpval 23026 2ndcdisj 23343 isufil 23790 ptcmplem2 23940 mblsplit 25433 voliunlem3 25453 ig1pval 26081 nbgr2vtx1edg 29277 nbuhgr2vtx1edgb 29279 nb3grprlem2 29308 uvtx01vtx 29324 cplgr1v 29357 dfconngr1 30117 isconngr1 30119 isfrgr 30189 frgr1v 30200 nfrgr2v 30201 frgr3v 30204 1vwmgr 30205 3vfriswmgr 30207 difeq 32447 symgcntz 33042 tocycval 33065 sigaval 34101 issiga 34102 issgon 34113 isros 34158 unelros 34161 difelros 34162 inelsros 34168 diffiunisros 34169 rossros 34170 inelcarsg 34302 carsgclctunlem2 34310 probun 34410 ballotlemgval 34515 cvmscbv 35245 cvmsi 35252 cvmsval 35253 poimirlem4 37618 dssmapfvd 44006 compne 44430 dvmptfprod 45943 caragensplit 46498 vonvolmbllem 46658 vonvolmbl 46659 ldepsnlinc 48497 eenglngeehlnm 48728 |
| Copyright terms: Public domain | W3C validator |