| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3423 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3926 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3926 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-dif 3920 |
| This theorem is referenced by: difeq12 4087 difeq1i 4088 difeq1d 4091 symdifeq1 4221 uneqdifeq 4459 hartogslem1 9502 kmlem9 10119 kmlem11 10121 kmlem12 10122 isfin1a 10252 fin1a2lem13 10372 fundmge2nop0 14474 incexclem 15809 coprmprod 16638 coprmproddvds 16640 ismri 17599 f1otrspeq 19384 pmtrval 19388 pmtrfrn 19395 symgsssg 19404 symgfisg 19405 symggen 19407 psgnunilem1 19430 psgnunilem5 19431 psgneldm 19440 ablfac1eulem 20011 sdrgacs 20717 islbs 20990 lbsextlem1 21075 lbsextlem2 21076 lbsextlem3 21077 lbsextlem4 21078 cofipsgn 21509 selvffval 22027 submafval 22473 m1detdiag 22491 lpval 23033 2ndcdisj 23350 isufil 23797 ptcmplem2 23947 mblsplit 25440 voliunlem3 25460 ig1pval 26088 nbgr2vtx1edg 29284 nbuhgr2vtx1edgb 29286 nb3grprlem2 29315 uvtx01vtx 29331 cplgr1v 29364 dfconngr1 30124 isconngr1 30126 isfrgr 30196 frgr1v 30207 nfrgr2v 30208 frgr3v 30211 1vwmgr 30212 3vfriswmgr 30214 difeq 32454 symgcntz 33049 tocycval 33072 sigaval 34108 issiga 34109 issgon 34120 isros 34165 unelros 34168 difelros 34169 inelsros 34175 diffiunisros 34176 rossros 34177 inelcarsg 34309 carsgclctunlem2 34317 probun 34417 ballotlemgval 34522 cvmscbv 35252 cvmsi 35259 cvmsval 35260 poimirlem4 37625 dssmapfvd 44013 compne 44437 dvmptfprod 45950 caragensplit 46505 vonvolmbllem 46665 vonvolmbl 46666 ldepsnlinc 48501 eenglngeehlnm 48732 |
| Copyright terms: Public domain | W3C validator |