Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3417 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3901 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3901 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2110 {crab 3070 ∖ cdif 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-dif 3895 |
This theorem is referenced by: difeq12 4057 difeq1i 4058 difeq1d 4061 symdifeq1 4184 uneqdifeq 4429 hartogslem1 9279 kmlem9 9915 kmlem11 9917 kmlem12 9918 isfin1a 10049 fin1a2lem13 10169 fundmge2nop0 14204 incexclem 15546 coprmprod 16364 coprmproddvds 16366 ismri 17338 f1otrspeq 19053 pmtrval 19057 pmtrfrn 19064 symgsssg 19073 symgfisg 19074 symggen 19076 psgnunilem1 19099 psgnunilem5 19100 psgneldm 19109 ablfac1eulem 19673 sdrgacs 20067 islbs 20336 lbsextlem1 20418 lbsextlem2 20419 lbsextlem3 20420 lbsextlem4 20421 cofipsgn 20796 selvffval 21324 submafval 21726 m1detdiag 21744 lpval 22288 2ndcdisj 22605 isufil 23052 ptcmplem2 23202 mblsplit 24694 voliunlem3 24714 ig1pval 25335 nbgr2vtx1edg 27715 nbuhgr2vtx1edgb 27717 nbgr0vtx 27721 nb3grprlem2 27746 uvtx01vtx 27762 cplgr1v 27795 dfconngr1 28548 isconngr1 28550 isfrgr 28620 frgr1v 28631 nfrgr2v 28632 frgr3v 28635 1vwmgr 28636 3vfriswmgr 28638 difeq 30861 symgcntz 31350 tocycval 31371 sigaval 32075 issiga 32076 issgon 32087 isros 32132 unelros 32135 difelros 32136 inelsros 32142 diffiunisros 32143 rossros 32144 inelcarsg 32274 carsgclctunlem2 32282 probun 32382 ballotlemgval 32486 cvmscbv 33216 cvmsi 33223 cvmsval 33224 poimirlem4 35777 dssmapfvd 41595 compne 42029 dvmptfprod 43457 caragensplit 44009 vonvolmbllem 44169 vonvolmbl 44170 ldepsnlinc 45818 eenglngeehlnm 46054 |
Copyright terms: Public domain | W3C validator |