| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3409 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3906 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3906 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-dif 3900 |
| This theorem is referenced by: difeq12 4066 difeq1i 4067 difeq1d 4070 symdifeq1 4200 uneqdifeq 4438 hartogslem1 9423 kmlem9 10045 kmlem11 10047 kmlem12 10048 isfin1a 10178 fin1a2lem13 10298 fundmge2nop0 14404 incexclem 15738 coprmprod 16567 coprmproddvds 16569 ismri 17532 f1otrspeq 19354 pmtrval 19358 pmtrfrn 19365 symgsssg 19374 symgfisg 19375 symggen 19377 psgnunilem1 19400 psgnunilem5 19401 psgneldm 19410 ablfac1eulem 19981 sdrgacs 20711 islbs 21005 lbsextlem1 21090 lbsextlem2 21091 lbsextlem3 21092 lbsextlem4 21093 cofipsgn 21525 selvffval 22043 submafval 22489 m1detdiag 22507 lpval 23049 2ndcdisj 23366 isufil 23813 ptcmplem2 23963 mblsplit 25455 voliunlem3 25475 ig1pval 26103 nbgr2vtx1edg 29323 nbuhgr2vtx1edgb 29325 nb3grprlem2 29354 uvtx01vtx 29370 cplgr1v 29403 dfconngr1 30160 isconngr1 30162 isfrgr 30232 frgr1v 30243 nfrgr2v 30244 frgr3v 30247 1vwmgr 30248 3vfriswmgr 30250 difeq 32490 symgcntz 33046 tocycval 33069 sigaval 34116 issiga 34117 issgon 34128 isros 34173 unelros 34176 difelros 34177 inelsros 34183 diffiunisros 34184 rossros 34185 inelcarsg 34316 carsgclctunlem2 34324 probun 34424 ballotlemgval 34529 cvmscbv 35294 cvmsi 35301 cvmsval 35302 poimirlem4 37664 dssmapfvd 44050 compne 44473 dvmptfprod 45983 caragensplit 46538 vonvolmbllem 46698 vonvolmbl 46699 ldepsnlinc 48540 eenglngeehlnm 48771 |
| Copyright terms: Public domain | W3C validator |