| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3417 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3920 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3920 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: difeq12 4080 difeq1i 4081 difeq1d 4084 symdifeq1 4214 uneqdifeq 4452 hartogslem1 9471 kmlem9 10088 kmlem11 10090 kmlem12 10091 isfin1a 10221 fin1a2lem13 10341 fundmge2nop0 14443 incexclem 15778 coprmprod 16607 coprmproddvds 16609 ismri 17568 f1otrspeq 19353 pmtrval 19357 pmtrfrn 19364 symgsssg 19373 symgfisg 19374 symggen 19376 psgnunilem1 19399 psgnunilem5 19400 psgneldm 19409 ablfac1eulem 19980 sdrgacs 20686 islbs 20959 lbsextlem1 21044 lbsextlem2 21045 lbsextlem3 21046 lbsextlem4 21047 cofipsgn 21478 selvffval 21996 submafval 22442 m1detdiag 22460 lpval 23002 2ndcdisj 23319 isufil 23766 ptcmplem2 23916 mblsplit 25409 voliunlem3 25429 ig1pval 26057 nbgr2vtx1edg 29253 nbuhgr2vtx1edgb 29255 nb3grprlem2 29284 uvtx01vtx 29300 cplgr1v 29333 dfconngr1 30090 isconngr1 30092 isfrgr 30162 frgr1v 30173 nfrgr2v 30174 frgr3v 30177 1vwmgr 30178 3vfriswmgr 30180 difeq 32420 symgcntz 33015 tocycval 33038 sigaval 34074 issiga 34075 issgon 34086 isros 34131 unelros 34134 difelros 34135 inelsros 34141 diffiunisros 34142 rossros 34143 inelcarsg 34275 carsgclctunlem2 34283 probun 34383 ballotlemgval 34488 cvmscbv 35218 cvmsi 35225 cvmsval 35226 poimirlem4 37591 dssmapfvd 43979 compne 44403 dvmptfprod 45916 caragensplit 46471 vonvolmbllem 46631 vonvolmbl 46632 ldepsnlinc 48470 eenglngeehlnm 48701 |
| Copyright terms: Public domain | W3C validator |