![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3444 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3956 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3956 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 {crab 3430 ∖ cdif 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-dif 3950 |
This theorem is referenced by: difeq12 4116 difeq1i 4117 difeq1d 4120 symdifeq1 4243 uneqdifeq 4491 hartogslem1 9539 kmlem9 10155 kmlem11 10157 kmlem12 10158 isfin1a 10289 fin1a2lem13 10409 fundmge2nop0 14457 incexclem 15786 coprmprod 16602 coprmproddvds 16604 ismri 17579 f1otrspeq 19356 pmtrval 19360 pmtrfrn 19367 symgsssg 19376 symgfisg 19377 symggen 19379 psgnunilem1 19402 psgnunilem5 19403 psgneldm 19412 ablfac1eulem 19983 sdrgacs 20560 islbs 20831 lbsextlem1 20916 lbsextlem2 20917 lbsextlem3 20918 lbsextlem4 20919 cofipsgn 21365 selvffval 21898 submafval 22301 m1detdiag 22319 lpval 22863 2ndcdisj 23180 isufil 23627 ptcmplem2 23777 mblsplit 25281 voliunlem3 25301 ig1pval 25925 nbgr2vtx1edg 28874 nbuhgr2vtx1edgb 28876 nbgr0vtx 28880 nb3grprlem2 28905 uvtx01vtx 28921 cplgr1v 28954 dfconngr1 29708 isconngr1 29710 isfrgr 29780 frgr1v 29791 nfrgr2v 29792 frgr3v 29795 1vwmgr 29796 3vfriswmgr 29798 difeq 32023 symgcntz 32516 tocycval 32537 sigaval 33407 issiga 33408 issgon 33419 isros 33464 unelros 33467 difelros 33468 inelsros 33474 diffiunisros 33475 rossros 33476 inelcarsg 33608 carsgclctunlem2 33616 probun 33716 ballotlemgval 33820 cvmscbv 34547 cvmsi 34554 cvmsval 34555 poimirlem4 36795 dssmapfvd 43070 compne 43502 dvmptfprod 44959 caragensplit 45514 vonvolmbllem 45674 vonvolmbl 45675 ldepsnlinc 47276 eenglngeehlnm 47512 |
Copyright terms: Public domain | W3C validator |