Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3418 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3896 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3896 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-dif 3890 |
This theorem is referenced by: difeq12 4052 difeq1i 4053 difeq1d 4056 symdifeq1 4178 uneqdifeq 4423 hartogslem1 9301 kmlem9 9914 kmlem11 9916 kmlem12 9917 isfin1a 10048 fin1a2lem13 10168 fundmge2nop0 14206 incexclem 15548 coprmprod 16366 coprmproddvds 16368 ismri 17340 f1otrspeq 19055 pmtrval 19059 pmtrfrn 19066 symgsssg 19075 symgfisg 19076 symggen 19078 psgnunilem1 19101 psgnunilem5 19102 psgneldm 19111 ablfac1eulem 19675 sdrgacs 20069 islbs 20338 lbsextlem1 20420 lbsextlem2 20421 lbsextlem3 20422 lbsextlem4 20423 cofipsgn 20798 selvffval 21326 submafval 21728 m1detdiag 21746 lpval 22290 2ndcdisj 22607 isufil 23054 ptcmplem2 23204 mblsplit 24696 voliunlem3 24716 ig1pval 25337 nbgr2vtx1edg 27717 nbuhgr2vtx1edgb 27719 nbgr0vtx 27723 nb3grprlem2 27748 uvtx01vtx 27764 cplgr1v 27797 dfconngr1 28552 isconngr1 28554 isfrgr 28624 frgr1v 28635 nfrgr2v 28636 frgr3v 28639 1vwmgr 28640 3vfriswmgr 28642 difeq 30865 symgcntz 31354 tocycval 31375 sigaval 32079 issiga 32080 issgon 32091 isros 32136 unelros 32139 difelros 32140 inelsros 32146 diffiunisros 32147 rossros 32148 inelcarsg 32278 carsgclctunlem2 32286 probun 32386 ballotlemgval 32490 cvmscbv 33220 cvmsi 33227 cvmsval 33228 poimirlem4 35781 dssmapfvd 41625 compne 42059 dvmptfprod 43486 caragensplit 44038 vonvolmbllem 44198 vonvolmbl 44199 ldepsnlinc 45849 eenglngeehlnm 46085 |
Copyright terms: Public domain | W3C validator |