![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3447 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3958 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3958 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 ∖ cdif 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-dif 3952 |
This theorem is referenced by: difeq12 4118 difeq1i 4119 difeq1d 4122 symdifeq1 4245 uneqdifeq 4493 hartogslem1 9537 kmlem9 10153 kmlem11 10155 kmlem12 10156 isfin1a 10287 fin1a2lem13 10407 fundmge2nop0 14453 incexclem 15782 coprmprod 16598 coprmproddvds 16600 ismri 17575 f1otrspeq 19315 pmtrval 19319 pmtrfrn 19326 symgsssg 19335 symgfisg 19336 symggen 19338 psgnunilem1 19361 psgnunilem5 19362 psgneldm 19371 ablfac1eulem 19942 sdrgacs 20417 islbs 20687 lbsextlem1 20771 lbsextlem2 20772 lbsextlem3 20773 lbsextlem4 20774 cofipsgn 21146 selvffval 21679 submafval 22081 m1detdiag 22099 lpval 22643 2ndcdisj 22960 isufil 23407 ptcmplem2 23557 mblsplit 25049 voliunlem3 25069 ig1pval 25690 nbgr2vtx1edg 28638 nbuhgr2vtx1edgb 28640 nbgr0vtx 28644 nb3grprlem2 28669 uvtx01vtx 28685 cplgr1v 28718 dfconngr1 29472 isconngr1 29474 isfrgr 29544 frgr1v 29555 nfrgr2v 29556 frgr3v 29559 1vwmgr 29560 3vfriswmgr 29562 difeq 31787 symgcntz 32277 tocycval 32298 sigaval 33140 issiga 33141 issgon 33152 isros 33197 unelros 33200 difelros 33201 inelsros 33207 diffiunisros 33208 rossros 33209 inelcarsg 33341 carsgclctunlem2 33349 probun 33449 ballotlemgval 33553 cvmscbv 34280 cvmsi 34287 cvmsval 34288 poimirlem4 36540 dssmapfvd 42816 compne 43248 dvmptfprod 44709 caragensplit 45264 vonvolmbllem 45424 vonvolmbl 45425 ldepsnlinc 47237 eenglngeehlnm 47473 |
Copyright terms: Public domain | W3C validator |