| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3409 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
| 2 | dfdif2 3912 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 3 | dfdif2 3912 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 ∖ cdif 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-dif 3906 |
| This theorem is referenced by: difeq12 4072 difeq1i 4073 difeq1d 4076 symdifeq1 4206 uneqdifeq 4444 hartogslem1 9434 kmlem9 10053 kmlem11 10055 kmlem12 10056 isfin1a 10186 fin1a2lem13 10306 fundmge2nop0 14409 incexclem 15743 coprmprod 16572 coprmproddvds 16574 ismri 17537 f1otrspeq 19326 pmtrval 19330 pmtrfrn 19337 symgsssg 19346 symgfisg 19347 symggen 19349 psgnunilem1 19372 psgnunilem5 19373 psgneldm 19382 ablfac1eulem 19953 sdrgacs 20686 islbs 20980 lbsextlem1 21065 lbsextlem2 21066 lbsextlem3 21067 lbsextlem4 21068 cofipsgn 21500 selvffval 22018 submafval 22464 m1detdiag 22482 lpval 23024 2ndcdisj 23341 isufil 23788 ptcmplem2 23938 mblsplit 25431 voliunlem3 25451 ig1pval 26079 nbgr2vtx1edg 29295 nbuhgr2vtx1edgb 29297 nb3grprlem2 29326 uvtx01vtx 29342 cplgr1v 29375 dfconngr1 30132 isconngr1 30134 isfrgr 30204 frgr1v 30215 nfrgr2v 30216 frgr3v 30219 1vwmgr 30220 3vfriswmgr 30222 difeq 32462 symgcntz 33027 tocycval 33050 sigaval 34078 issiga 34079 issgon 34090 isros 34135 unelros 34138 difelros 34139 inelsros 34145 diffiunisros 34146 rossros 34147 inelcarsg 34279 carsgclctunlem2 34287 probun 34387 ballotlemgval 34492 cvmscbv 35231 cvmsi 35238 cvmsval 35239 poimirlem4 37604 dssmapfvd 43990 compne 44414 dvmptfprod 45926 caragensplit 46481 vonvolmbllem 46641 vonvolmbl 46642 ldepsnlinc 48493 eenglngeehlnm 48724 |
| Copyright terms: Public domain | W3C validator |