![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3447 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶}) | |
2 | dfdif2 3971 | . 2 ⊢ (𝐴 ∖ 𝐶) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐶} | |
3 | dfdif2 3971 | . 2 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∈ 𝐵 ∣ ¬ 𝑥 ∈ 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ∈ wcel 2105 {crab 3432 ∖ cdif 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-dif 3965 |
This theorem is referenced by: difeq12 4130 difeq1i 4131 difeq1d 4134 symdifeq1 4260 uneqdifeq 4498 hartogslem1 9579 kmlem9 10196 kmlem11 10198 kmlem12 10199 isfin1a 10329 fin1a2lem13 10449 fundmge2nop0 14537 incexclem 15868 coprmprod 16694 coprmproddvds 16696 ismri 17675 f1otrspeq 19479 pmtrval 19483 pmtrfrn 19490 symgsssg 19499 symgfisg 19500 symggen 19502 psgnunilem1 19525 psgnunilem5 19526 psgneldm 19535 ablfac1eulem 20106 sdrgacs 20818 islbs 21092 lbsextlem1 21177 lbsextlem2 21178 lbsextlem3 21179 lbsextlem4 21180 cofipsgn 21628 selvffval 22154 submafval 22600 m1detdiag 22618 lpval 23162 2ndcdisj 23479 isufil 23926 ptcmplem2 24076 mblsplit 25580 voliunlem3 25600 ig1pval 26229 nbgr2vtx1edg 29381 nbuhgr2vtx1edgb 29383 nb3grprlem2 29412 uvtx01vtx 29428 cplgr1v 29461 dfconngr1 30216 isconngr1 30218 isfrgr 30288 frgr1v 30299 nfrgr2v 30300 frgr3v 30303 1vwmgr 30304 3vfriswmgr 30306 difeq 32545 symgcntz 33087 tocycval 33110 sigaval 34091 issiga 34092 issgon 34103 isros 34148 unelros 34151 difelros 34152 inelsros 34158 diffiunisros 34159 rossros 34160 inelcarsg 34292 carsgclctunlem2 34300 probun 34400 ballotlemgval 34504 cvmscbv 35242 cvmsi 35249 cvmsval 35250 poimirlem4 37610 dssmapfvd 44006 compne 44436 dvmptfprod 45900 caragensplit 46455 vonvolmbllem 46615 vonvolmbl 46616 ldepsnlinc 48353 eenglngeehlnm 48588 |
Copyright terms: Public domain | W3C validator |