| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2829 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3443 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3959 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3959 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 ∖ cdif 3947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-dif 3953 |
| This theorem is referenced by: difeq12 4120 difeq2i 4122 difeq2d 4125 symdifeq1 4254 ssdifim 4272 disjdif2 4479 ssdifeq0 4486 sorpsscmpl 7755 2oconcl 8542 oev 8553 sbthlem2 9125 sbth 9134 sbthfi 9240 infdiffi 9699 fin1ai 10334 fin23lem7 10357 fin23lem11 10358 compsscnv 10412 isf34lem1 10413 compss 10417 isf34lem4 10418 fin1a2lem7 10447 pwfseqlem4a 10702 pwfseqlem4 10703 efgmval 19731 efgi 19738 frgpuptinv 19790 gsumcllem 19927 gsumzaddlem 19940 selvfval 22139 fctop 23012 cctop 23014 iscld 23036 clsval2 23059 opncldf1 23093 opncldf2 23094 opncldf3 23095 indiscld 23100 mretopd 23101 restcld 23181 lecldbas 23228 pnrmopn 23352 hauscmplem 23415 elpt 23581 elptr 23582 cfinfil 23902 csdfil 23903 ufilss 23914 filufint 23929 cfinufil 23937 ufinffr 23938 ufilen 23939 prdsxmslem2 24543 lebnumlem1 24994 bcth3 25366 ismbl 25562 ishpg 28768 frgrwopregasn 30336 frgrwopregbsn 30337 disjdifprg 32589 0elsiga 34116 prsiga 34133 sigaclci 34134 difelsiga 34135 unelldsys 34160 sigapildsyslem 34163 sigapildsys 34164 ldgenpisyslem1 34165 isros 34170 unelros 34173 difelros 34174 inelsros 34180 diffiunisros 34181 rossros 34182 elcarsg 34308 ballotlemfval 34493 ballotlemgval 34527 kur14lem1 35212 topdifinffinlem 37349 topdifinffin 37350 oe0rif 43303 dssmapfv3d 44037 dssmapnvod 44038 clsk3nimkb 44058 ntrclsneine0lem 44082 ntrclsk2 44086 ntrclskb 44087 ntrclsk13 44089 ntrclsk4 44090 prsal 46338 saldifcl 46339 salexct 46354 salexct2 46359 salexct3 46362 salgencntex 46363 salgensscntex 46364 caragenel 46515 opncldeqv 48806 |
| Copyright terms: Public domain | W3C validator |