Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 317 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3404 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3892 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3892 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-dif 3886 |
This theorem is referenced by: difeq12 4048 difeq2i 4050 difeq2d 4053 symdifeq1 4175 ssdifim 4193 disjdif2 4410 ssdifeq0 4414 sorpsscmpl 7565 2oconcl 8295 oev 8306 sbthlem2 8824 sbth 8833 sbthfi 8942 infdiffi 9346 fin1ai 9980 fin23lem7 10003 fin23lem11 10004 compsscnv 10058 isf34lem1 10059 compss 10063 isf34lem4 10064 fin1a2lem7 10093 pwfseqlem4a 10348 pwfseqlem4 10349 efgmval 19233 efgi 19240 frgpuptinv 19292 gsumcllem 19424 gsumzaddlem 19437 selvfval 21237 fctop 22062 cctop 22064 iscld 22086 clsval2 22109 opncldf1 22143 opncldf2 22144 opncldf3 22145 indiscld 22150 mretopd 22151 restcld 22231 lecldbas 22278 pnrmopn 22402 hauscmplem 22465 elpt 22631 elptr 22632 cfinfil 22952 csdfil 22953 ufilss 22964 filufint 22979 cfinufil 22987 ufinffr 22988 ufilen 22989 prdsxmslem2 23591 lebnumlem1 24030 bcth3 24400 ismbl 24595 ishpg 27024 frgrwopregasn 28581 frgrwopregbsn 28582 disjdifprg 30815 0elsiga 31982 prsiga 31999 sigaclci 32000 difelsiga 32001 unelldsys 32026 sigapildsyslem 32029 sigapildsys 32030 ldgenpisyslem1 32031 isros 32036 unelros 32039 difelros 32040 inelsros 32046 diffiunisros 32047 rossros 32048 elcarsg 32172 ballotlemfval 32356 ballotlemgval 32390 kur14lem1 33068 topdifinffinlem 35445 topdifinffin 35446 dssmapfv3d 41516 dssmapnvod 41517 clsk3nimkb 41539 ntrclsneine0lem 41563 ntrclsk2 41567 ntrclskb 41568 ntrclsk13 41570 ntrclsk4 41571 prsal 43749 saldifcl 43750 salexct 43763 salexct2 43768 salexct3 43771 salgencntex 43772 salgensscntex 43773 caragenel 43923 opncldeqv 46083 |
Copyright terms: Public domain | W3C validator |