![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2821 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3439 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3957 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3957 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3431 ∖ cdif 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-dif 3951 |
This theorem is referenced by: difeq12 4117 difeq2i 4119 difeq2d 4122 symdifeq1 4244 ssdifim 4262 disjdif2 4479 ssdifeq0 4486 sorpsscmpl 7728 2oconcl 8509 oev 8520 sbthlem2 9090 sbth 9099 sbthfi 9208 infdiffi 9659 fin1ai 10294 fin23lem7 10317 fin23lem11 10318 compsscnv 10372 isf34lem1 10373 compss 10377 isf34lem4 10378 fin1a2lem7 10407 pwfseqlem4a 10662 pwfseqlem4 10663 efgmval 19625 efgi 19632 frgpuptinv 19684 gsumcllem 19821 gsumzaddlem 19834 selvfval 21901 fctop 22740 cctop 22742 iscld 22764 clsval2 22787 opncldf1 22821 opncldf2 22822 opncldf3 22823 indiscld 22828 mretopd 22829 restcld 22909 lecldbas 22956 pnrmopn 23080 hauscmplem 23143 elpt 23309 elptr 23310 cfinfil 23630 csdfil 23631 ufilss 23642 filufint 23657 cfinufil 23665 ufinffr 23666 ufilen 23667 prdsxmslem2 24271 lebnumlem1 24720 bcth3 25092 ismbl 25288 ishpg 28292 frgrwopregasn 29851 frgrwopregbsn 29852 disjdifprg 32088 0elsiga 33425 prsiga 33442 sigaclci 33443 difelsiga 33444 unelldsys 33469 sigapildsyslem 33472 sigapildsys 33473 ldgenpisyslem1 33474 isros 33479 unelros 33482 difelros 33483 inelsros 33489 diffiunisros 33490 rossros 33491 elcarsg 33617 ballotlemfval 33801 ballotlemgval 33835 kur14lem1 34510 topdifinffinlem 36544 topdifinffin 36545 oe0rif 42350 dssmapfv3d 43085 dssmapnvod 43086 clsk3nimkb 43106 ntrclsneine0lem 43130 ntrclsk2 43134 ntrclskb 43135 ntrclsk13 43137 ntrclsk4 43138 prsal 45345 saldifcl 45346 salexct 45361 salexct2 45366 salexct3 45369 salgencntex 45370 salgensscntex 45371 caragenel 45522 opncldeqv 47634 |
Copyright terms: Public domain | W3C validator |