Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3415 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3897 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3897 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3069 ∖ cdif 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-dif 3891 |
This theorem is referenced by: difeq12 4053 difeq2i 4055 difeq2d 4058 symdifeq1 4179 ssdifim 4197 disjdif2 4414 ssdifeq0 4418 sorpsscmpl 7596 2oconcl 8342 oev 8353 sbthlem2 8880 sbth 8889 sbthfi 8994 infdiffi 9425 fin1ai 10058 fin23lem7 10081 fin23lem11 10082 compsscnv 10136 isf34lem1 10137 compss 10141 isf34lem4 10142 fin1a2lem7 10171 pwfseqlem4a 10426 pwfseqlem4 10427 efgmval 19327 efgi 19334 frgpuptinv 19386 gsumcllem 19518 gsumzaddlem 19531 selvfval 21336 fctop 22163 cctop 22165 iscld 22187 clsval2 22210 opncldf1 22244 opncldf2 22245 opncldf3 22246 indiscld 22251 mretopd 22252 restcld 22332 lecldbas 22379 pnrmopn 22503 hauscmplem 22566 elpt 22732 elptr 22733 cfinfil 23053 csdfil 23054 ufilss 23065 filufint 23080 cfinufil 23088 ufinffr 23089 ufilen 23090 prdsxmslem2 23694 lebnumlem1 24133 bcth3 24504 ismbl 24699 ishpg 27129 frgrwopregasn 28689 frgrwopregbsn 28690 disjdifprg 30923 0elsiga 32091 prsiga 32108 sigaclci 32109 difelsiga 32110 unelldsys 32135 sigapildsyslem 32138 sigapildsys 32139 ldgenpisyslem1 32140 isros 32145 unelros 32148 difelros 32149 inelsros 32155 diffiunisros 32156 rossros 32157 elcarsg 32281 ballotlemfval 32465 ballotlemgval 32499 kur14lem1 33177 topdifinffinlem 35527 topdifinffin 35528 dssmapfv3d 41634 dssmapnvod 41635 clsk3nimkb 41657 ntrclsneine0lem 41681 ntrclsk2 41685 ntrclskb 41686 ntrclsk13 41688 ntrclsk4 41689 prsal 43866 saldifcl 43867 salexct 43880 salexct2 43885 salexct3 43888 salgencntex 43889 salgensscntex 43890 caragenel 44040 opncldeqv 46206 |
Copyright terms: Public domain | W3C validator |