![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3451 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3985 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3985 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-dif 3979 |
This theorem is referenced by: difeq12 4144 difeq2i 4146 difeq2d 4149 symdifeq1 4274 ssdifim 4292 disjdif2 4503 ssdifeq0 4510 sorpsscmpl 7769 2oconcl 8559 oev 8570 sbthlem2 9150 sbth 9159 sbthfi 9265 infdiffi 9727 fin1ai 10362 fin23lem7 10385 fin23lem11 10386 compsscnv 10440 isf34lem1 10441 compss 10445 isf34lem4 10446 fin1a2lem7 10475 pwfseqlem4a 10730 pwfseqlem4 10731 efgmval 19754 efgi 19761 frgpuptinv 19813 gsumcllem 19950 gsumzaddlem 19963 selvfval 22161 fctop 23032 cctop 23034 iscld 23056 clsval2 23079 opncldf1 23113 opncldf2 23114 opncldf3 23115 indiscld 23120 mretopd 23121 restcld 23201 lecldbas 23248 pnrmopn 23372 hauscmplem 23435 elpt 23601 elptr 23602 cfinfil 23922 csdfil 23923 ufilss 23934 filufint 23949 cfinufil 23957 ufinffr 23958 ufilen 23959 prdsxmslem2 24563 lebnumlem1 25012 bcth3 25384 ismbl 25580 ishpg 28785 frgrwopregasn 30348 frgrwopregbsn 30349 disjdifprg 32597 0elsiga 34078 prsiga 34095 sigaclci 34096 difelsiga 34097 unelldsys 34122 sigapildsyslem 34125 sigapildsys 34126 ldgenpisyslem1 34127 isros 34132 unelros 34135 difelros 34136 inelsros 34142 diffiunisros 34143 rossros 34144 elcarsg 34270 ballotlemfval 34454 ballotlemgval 34488 kur14lem1 35174 topdifinffinlem 37313 topdifinffin 37314 oe0rif 43247 dssmapfv3d 43981 dssmapnvod 43982 clsk3nimkb 44002 ntrclsneine0lem 44026 ntrclsk2 44030 ntrclskb 44031 ntrclsk13 44033 ntrclsk4 44034 prsal 46239 saldifcl 46240 salexct 46255 salexct2 46260 salexct3 46263 salgencntex 46264 salgensscntex 46265 caragenel 46416 opncldeqv 48581 |
Copyright terms: Public domain | W3C validator |