![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3441 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3972 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3972 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 ∖ cdif 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-dif 3966 |
This theorem is referenced by: difeq12 4131 difeq2i 4133 difeq2d 4136 symdifeq1 4261 ssdifim 4279 disjdif2 4486 ssdifeq0 4493 sorpsscmpl 7753 2oconcl 8540 oev 8551 sbthlem2 9123 sbth 9132 sbthfi 9237 infdiffi 9696 fin1ai 10331 fin23lem7 10354 fin23lem11 10355 compsscnv 10409 isf34lem1 10410 compss 10414 isf34lem4 10415 fin1a2lem7 10444 pwfseqlem4a 10699 pwfseqlem4 10700 efgmval 19745 efgi 19752 frgpuptinv 19804 gsumcllem 19941 gsumzaddlem 19954 selvfval 22156 fctop 23027 cctop 23029 iscld 23051 clsval2 23074 opncldf1 23108 opncldf2 23109 opncldf3 23110 indiscld 23115 mretopd 23116 restcld 23196 lecldbas 23243 pnrmopn 23367 hauscmplem 23430 elpt 23596 elptr 23597 cfinfil 23917 csdfil 23918 ufilss 23929 filufint 23944 cfinufil 23952 ufinffr 23953 ufilen 23954 prdsxmslem2 24558 lebnumlem1 25007 bcth3 25379 ismbl 25575 ishpg 28782 frgrwopregasn 30345 frgrwopregbsn 30346 disjdifprg 32595 0elsiga 34095 prsiga 34112 sigaclci 34113 difelsiga 34114 unelldsys 34139 sigapildsyslem 34142 sigapildsys 34143 ldgenpisyslem1 34144 isros 34149 unelros 34152 difelros 34153 inelsros 34159 diffiunisros 34160 rossros 34161 elcarsg 34287 ballotlemfval 34471 ballotlemgval 34505 kur14lem1 35191 topdifinffinlem 37330 topdifinffin 37331 oe0rif 43275 dssmapfv3d 44009 dssmapnvod 44010 clsk3nimkb 44030 ntrclsneine0lem 44054 ntrclsk2 44058 ntrclskb 44059 ntrclsk13 44061 ntrclsk4 44062 prsal 46274 saldifcl 46275 salexct 46290 salexct2 46295 salexct3 46298 salgencntex 46299 salgensscntex 46300 caragenel 46451 opncldeqv 48698 |
Copyright terms: Public domain | W3C validator |