| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3402 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3906 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3906 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-dif 3900 |
| This theorem is referenced by: difeq12 4068 difeq2i 4070 difeq2d 4073 symdifeq1 4202 ssdifim 4220 disjdif2 4427 ssdifeq0 4434 sorpsscmpl 7667 2oconcl 8418 oev 8429 sbthlem2 9001 sbth 9010 sbthfi 9108 infdiffi 9548 fin1ai 10184 fin23lem7 10207 fin23lem11 10208 compsscnv 10262 isf34lem1 10263 compss 10267 isf34lem4 10268 fin1a2lem7 10297 pwfseqlem4a 10552 pwfseqlem4 10553 efgmval 19624 efgi 19631 frgpuptinv 19683 gsumcllem 19820 gsumzaddlem 19833 selvfval 22049 fctop 22919 cctop 22921 iscld 22942 clsval2 22965 opncldf1 22999 opncldf2 23000 opncldf3 23001 indiscld 23006 mretopd 23007 restcld 23087 lecldbas 23134 pnrmopn 23258 hauscmplem 23321 elpt 23487 elptr 23488 cfinfil 23808 csdfil 23809 ufilss 23820 filufint 23835 cfinufil 23843 ufinffr 23844 ufilen 23845 prdsxmslem2 24444 lebnumlem1 24887 bcth3 25258 ismbl 25454 ishpg 28737 frgrwopregasn 30296 frgrwopregbsn 30297 disjdifprg 32555 0elsiga 34127 prsiga 34144 sigaclci 34145 difelsiga 34146 unelldsys 34171 sigapildsyslem 34174 sigapildsys 34175 ldgenpisyslem1 34176 isros 34181 unelros 34184 difelros 34185 inelsros 34191 diffiunisros 34192 rossros 34193 elcarsg 34318 ballotlemfval 34503 ballotlemgval 34537 kur14lem1 35250 topdifinffinlem 37391 topdifinffin 37392 oe0rif 43388 dssmapfv3d 44122 dssmapnvod 44123 clsk3nimkb 44143 ntrclsneine0lem 44167 ntrclsk2 44171 ntrclskb 44172 ntrclsk13 44174 ntrclsk4 44175 prsal 46426 saldifcl 46427 salexct 46442 salexct2 46447 salexct3 46450 salgencntex 46451 salgensscntex 46452 caragenel 46603 opncldeqv 49012 |
| Copyright terms: Public domain | W3C validator |