| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3410 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3920 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3920 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: difeq12 4080 difeq2i 4082 difeq2d 4085 symdifeq1 4214 ssdifim 4232 disjdif2 4439 ssdifeq0 4446 sorpsscmpl 7690 2oconcl 8444 oev 8455 sbthlem2 9029 sbth 9038 sbthfi 9140 infdiffi 9587 fin1ai 10222 fin23lem7 10245 fin23lem11 10246 compsscnv 10300 isf34lem1 10301 compss 10305 isf34lem4 10306 fin1a2lem7 10335 pwfseqlem4a 10590 pwfseqlem4 10591 efgmval 19618 efgi 19625 frgpuptinv 19677 gsumcllem 19814 gsumzaddlem 19827 selvfval 21997 fctop 22867 cctop 22869 iscld 22890 clsval2 22913 opncldf1 22947 opncldf2 22948 opncldf3 22949 indiscld 22954 mretopd 22955 restcld 23035 lecldbas 23082 pnrmopn 23206 hauscmplem 23269 elpt 23435 elptr 23436 cfinfil 23756 csdfil 23757 ufilss 23768 filufint 23783 cfinufil 23791 ufinffr 23792 ufilen 23793 prdsxmslem2 24393 lebnumlem1 24836 bcth3 25207 ismbl 25403 ishpg 28662 frgrwopregasn 30218 frgrwopregbsn 30219 disjdifprg 32477 0elsiga 34077 prsiga 34094 sigaclci 34095 difelsiga 34096 unelldsys 34121 sigapildsyslem 34124 sigapildsys 34125 ldgenpisyslem1 34126 isros 34131 unelros 34134 difelros 34135 inelsros 34141 diffiunisros 34142 rossros 34143 elcarsg 34269 ballotlemfval 34454 ballotlemgval 34488 kur14lem1 35166 topdifinffinlem 37308 topdifinffin 37309 oe0rif 43247 dssmapfv3d 43981 dssmapnvod 43982 clsk3nimkb 44002 ntrclsneine0lem 44026 ntrclsk2 44030 ntrclskb 44031 ntrclsk13 44033 ntrclsk4 44034 prsal 46289 saldifcl 46290 salexct 46305 salexct2 46310 salexct3 46313 salgencntex 46314 salgensscntex 46315 caragenel 46466 opncldeqv 48863 |
| Copyright terms: Public domain | W3C validator |