![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 317 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3438 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3956 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3956 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 {crab 3430 ∖ cdif 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-dif 3950 |
This theorem is referenced by: difeq12 4116 difeq2i 4118 difeq2d 4121 symdifeq1 4243 ssdifim 4261 disjdif2 4478 ssdifeq0 4485 sorpsscmpl 7726 2oconcl 8505 oev 8516 sbthlem2 9086 sbth 9095 sbthfi 9204 infdiffi 9655 fin1ai 10290 fin23lem7 10313 fin23lem11 10314 compsscnv 10368 isf34lem1 10369 compss 10373 isf34lem4 10374 fin1a2lem7 10403 pwfseqlem4a 10658 pwfseqlem4 10659 efgmval 19621 efgi 19628 frgpuptinv 19680 gsumcllem 19817 gsumzaddlem 19830 selvfval 21899 fctop 22727 cctop 22729 iscld 22751 clsval2 22774 opncldf1 22808 opncldf2 22809 opncldf3 22810 indiscld 22815 mretopd 22816 restcld 22896 lecldbas 22943 pnrmopn 23067 hauscmplem 23130 elpt 23296 elptr 23297 cfinfil 23617 csdfil 23618 ufilss 23629 filufint 23644 cfinufil 23652 ufinffr 23653 ufilen 23654 prdsxmslem2 24258 lebnumlem1 24707 bcth3 25079 ismbl 25275 ishpg 28277 frgrwopregasn 29836 frgrwopregbsn 29837 disjdifprg 32073 0elsiga 33410 prsiga 33427 sigaclci 33428 difelsiga 33429 unelldsys 33454 sigapildsyslem 33457 sigapildsys 33458 ldgenpisyslem1 33459 isros 33464 unelros 33467 difelros 33468 inelsros 33474 diffiunisros 33475 rossros 33476 elcarsg 33602 ballotlemfval 33786 ballotlemgval 33820 kur14lem1 34495 topdifinffinlem 36531 topdifinffin 36532 oe0rif 42337 dssmapfv3d 43072 dssmapnvod 43073 clsk3nimkb 43093 ntrclsneine0lem 43117 ntrclsk2 43121 ntrclskb 43122 ntrclsk13 43124 ntrclsk4 43125 prsal 45332 saldifcl 45333 salexct 45348 salexct2 45353 salexct3 45356 salgencntex 45357 salgensscntex 45358 caragenel 45509 opncldeqv 47621 |
Copyright terms: Public domain | W3C validator |