![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2823 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3441 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3958 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3958 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 ∖ cdif 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-dif 3952 |
This theorem is referenced by: difeq12 4118 difeq2i 4120 difeq2d 4123 symdifeq1 4245 ssdifim 4263 disjdif2 4480 ssdifeq0 4487 sorpsscmpl 7724 2oconcl 8503 oev 8514 sbthlem2 9084 sbth 9093 sbthfi 9202 infdiffi 9653 fin1ai 10288 fin23lem7 10311 fin23lem11 10312 compsscnv 10366 isf34lem1 10367 compss 10371 isf34lem4 10372 fin1a2lem7 10401 pwfseqlem4a 10656 pwfseqlem4 10657 efgmval 19580 efgi 19587 frgpuptinv 19639 gsumcllem 19776 gsumzaddlem 19789 selvfval 21680 fctop 22507 cctop 22509 iscld 22531 clsval2 22554 opncldf1 22588 opncldf2 22589 opncldf3 22590 indiscld 22595 mretopd 22596 restcld 22676 lecldbas 22723 pnrmopn 22847 hauscmplem 22910 elpt 23076 elptr 23077 cfinfil 23397 csdfil 23398 ufilss 23409 filufint 23424 cfinufil 23432 ufinffr 23433 ufilen 23434 prdsxmslem2 24038 lebnumlem1 24477 bcth3 24848 ismbl 25043 ishpg 28010 frgrwopregasn 29569 frgrwopregbsn 29570 disjdifprg 31806 0elsiga 33112 prsiga 33129 sigaclci 33130 difelsiga 33131 unelldsys 33156 sigapildsyslem 33159 sigapildsys 33160 ldgenpisyslem1 33161 isros 33166 unelros 33169 difelros 33170 inelsros 33176 diffiunisros 33177 rossros 33178 elcarsg 33304 ballotlemfval 33488 ballotlemgval 33522 kur14lem1 34197 topdifinffinlem 36228 topdifinffin 36229 oe0rif 42035 dssmapfv3d 42770 dssmapnvod 42771 clsk3nimkb 42791 ntrclsneine0lem 42815 ntrclsk2 42819 ntrclskb 42820 ntrclsk13 42822 ntrclsk4 42823 prsal 45034 saldifcl 45035 salexct 45050 salexct2 45055 salexct3 45058 salgencntex 45059 salgensscntex 45060 caragenel 45211 opncldeqv 47534 |
Copyright terms: Public domain | W3C validator |