![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2867 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 310 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3373 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3778 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3778 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2858 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ∈ wcel 2157 {crab 3093 ∖ cdif 3766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ral 3094 df-rab 3098 df-dif 3772 |
This theorem is referenced by: difeq12 3921 difeq2i 3923 difeq2d 3926 symdifeq1 4043 ssdifim 4063 disjdif2 4241 ssdifeq0 4245 sorpsscmpl 7182 2oconcl 7823 oev 7834 sbthlem2 8313 sbth 8322 infdiffi 8805 fin1ai 9403 fin23lem7 9426 fin23lem11 9427 compsscnv 9481 isf34lem1 9482 compss 9486 isf34lem4 9487 fin1a2lem7 9516 pwfseqlem4a 9771 pwfseqlem4 9772 efgmval 18438 efgi 18445 frgpuptinv 18499 gsumcllem 18624 gsumzaddlem 18636 fctop 21137 cctop 21139 iscld 21160 clsval2 21183 opncldf1 21217 opncldf2 21218 opncldf3 21219 indiscld 21224 mretopd 21225 restcld 21305 lecldbas 21352 pnrmopn 21476 hauscmplem 21538 elpt 21704 elptr 21705 cfinfil 22025 csdfil 22026 ufilss 22037 filufint 22052 cfinufil 22060 ufinffr 22061 ufilen 22062 prdsxmslem2 22662 lebnumlem1 23088 bcth3 23457 ismbl 23634 ishpg 26007 frgrwopregasn 27665 frgrwopregbsn 27666 disjdifprg 29905 0elsiga 30693 prsiga 30710 sigaclci 30711 difelsiga 30712 unelldsys 30737 sigapildsyslem 30740 sigapildsys 30741 ldgenpisyslem1 30742 isros 30747 unelros 30750 difelros 30751 inelsros 30757 diffiunisros 30758 rossros 30759 elcarsg 30883 ballotlemfval 31068 ballotlemgval 31102 kur14lem1 31705 topdifinffinlem 33693 topdifinffin 33694 dssmapfv3d 39095 dssmapnvod 39096 clsk3nimkb 39120 ntrclsneine0lem 39144 ntrclsk2 39148 ntrclskb 39149 ntrclsk13 39151 ntrclsk4 39152 prsal 41281 saldifcl 41282 salexct 41295 salexct2 41300 salexct3 41303 salgencntex 41304 salgensscntex 41305 caragenel 41455 |
Copyright terms: Public domain | W3C validator |