| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3402 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3912 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3912 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 ∖ cdif 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-dif 3906 |
| This theorem is referenced by: difeq12 4072 difeq2i 4074 difeq2d 4077 symdifeq1 4206 ssdifim 4224 disjdif2 4431 ssdifeq0 4438 sorpsscmpl 7670 2oconcl 8421 oev 8432 sbthlem2 9005 sbth 9014 sbthfi 9113 infdiffi 9554 fin1ai 10187 fin23lem7 10210 fin23lem11 10211 compsscnv 10265 isf34lem1 10266 compss 10270 isf34lem4 10271 fin1a2lem7 10300 pwfseqlem4a 10555 pwfseqlem4 10556 efgmval 19591 efgi 19598 frgpuptinv 19650 gsumcllem 19787 gsumzaddlem 19800 selvfval 22019 fctop 22889 cctop 22891 iscld 22912 clsval2 22935 opncldf1 22969 opncldf2 22970 opncldf3 22971 indiscld 22976 mretopd 22977 restcld 23057 lecldbas 23104 pnrmopn 23228 hauscmplem 23291 elpt 23457 elptr 23458 cfinfil 23778 csdfil 23779 ufilss 23790 filufint 23805 cfinufil 23813 ufinffr 23814 ufilen 23815 prdsxmslem2 24415 lebnumlem1 24858 bcth3 25229 ismbl 25425 ishpg 28704 frgrwopregasn 30260 frgrwopregbsn 30261 disjdifprg 32519 0elsiga 34081 prsiga 34098 sigaclci 34099 difelsiga 34100 unelldsys 34125 sigapildsyslem 34128 sigapildsys 34129 ldgenpisyslem1 34130 isros 34135 unelros 34138 difelros 34139 inelsros 34145 diffiunisros 34146 rossros 34147 elcarsg 34273 ballotlemfval 34458 ballotlemgval 34492 kur14lem1 35179 topdifinffinlem 37321 topdifinffin 37322 oe0rif 43258 dssmapfv3d 43992 dssmapnvod 43993 clsk3nimkb 44013 ntrclsneine0lem 44037 ntrclsk2 44041 ntrclskb 44042 ntrclsk13 44044 ntrclsk4 44045 prsal 46299 saldifcl 46300 salexct 46315 salexct2 46320 salexct3 46323 salgencntex 46324 salgensscntex 46325 caragenel 46476 opncldeqv 48886 |
| Copyright terms: Public domain | W3C validator |