| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2824 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3428 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3940 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3940 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-dif 3934 |
| This theorem is referenced by: difeq12 4101 difeq2i 4103 difeq2d 4106 symdifeq1 4235 ssdifim 4253 disjdif2 4460 ssdifeq0 4467 sorpsscmpl 7733 2oconcl 8520 oev 8531 sbthlem2 9103 sbth 9112 sbthfi 9218 infdiffi 9677 fin1ai 10312 fin23lem7 10335 fin23lem11 10336 compsscnv 10390 isf34lem1 10391 compss 10395 isf34lem4 10396 fin1a2lem7 10425 pwfseqlem4a 10680 pwfseqlem4 10681 efgmval 19698 efgi 19705 frgpuptinv 19757 gsumcllem 19894 gsumzaddlem 19907 selvfval 22077 fctop 22947 cctop 22949 iscld 22970 clsval2 22993 opncldf1 23027 opncldf2 23028 opncldf3 23029 indiscld 23034 mretopd 23035 restcld 23115 lecldbas 23162 pnrmopn 23286 hauscmplem 23349 elpt 23515 elptr 23516 cfinfil 23836 csdfil 23837 ufilss 23848 filufint 23863 cfinufil 23871 ufinffr 23872 ufilen 23873 prdsxmslem2 24473 lebnumlem1 24916 bcth3 25288 ismbl 25484 ishpg 28743 frgrwopregasn 30302 frgrwopregbsn 30303 disjdifprg 32561 0elsiga 34150 prsiga 34167 sigaclci 34168 difelsiga 34169 unelldsys 34194 sigapildsyslem 34197 sigapildsys 34198 ldgenpisyslem1 34199 isros 34204 unelros 34207 difelros 34208 inelsros 34214 diffiunisros 34215 rossros 34216 elcarsg 34342 ballotlemfval 34527 ballotlemgval 34561 kur14lem1 35233 topdifinffinlem 37370 topdifinffin 37371 oe0rif 43284 dssmapfv3d 44018 dssmapnvod 44019 clsk3nimkb 44039 ntrclsneine0lem 44063 ntrclsk2 44067 ntrclskb 44068 ntrclsk13 44070 ntrclsk4 44071 prsal 46327 saldifcl 46328 salexct 46343 salexct2 46348 salexct3 46351 salgencntex 46352 salgensscntex 46353 caragenel 46504 opncldeqv 48856 |
| Copyright terms: Public domain | W3C validator |