| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3413 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3923 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3923 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-dif 3917 |
| This theorem is referenced by: difeq12 4084 difeq2i 4086 difeq2d 4089 symdifeq1 4218 ssdifim 4236 disjdif2 4443 ssdifeq0 4450 sorpsscmpl 7710 2oconcl 8467 oev 8478 sbthlem2 9052 sbth 9061 sbthfi 9163 infdiffi 9611 fin1ai 10246 fin23lem7 10269 fin23lem11 10270 compsscnv 10324 isf34lem1 10325 compss 10329 isf34lem4 10330 fin1a2lem7 10359 pwfseqlem4a 10614 pwfseqlem4 10615 efgmval 19642 efgi 19649 frgpuptinv 19701 gsumcllem 19838 gsumzaddlem 19851 selvfval 22021 fctop 22891 cctop 22893 iscld 22914 clsval2 22937 opncldf1 22971 opncldf2 22972 opncldf3 22973 indiscld 22978 mretopd 22979 restcld 23059 lecldbas 23106 pnrmopn 23230 hauscmplem 23293 elpt 23459 elptr 23460 cfinfil 23780 csdfil 23781 ufilss 23792 filufint 23807 cfinufil 23815 ufinffr 23816 ufilen 23817 prdsxmslem2 24417 lebnumlem1 24860 bcth3 25231 ismbl 25427 ishpg 28686 frgrwopregasn 30245 frgrwopregbsn 30246 disjdifprg 32504 0elsiga 34104 prsiga 34121 sigaclci 34122 difelsiga 34123 unelldsys 34148 sigapildsyslem 34151 sigapildsys 34152 ldgenpisyslem1 34153 isros 34158 unelros 34161 difelros 34162 inelsros 34168 diffiunisros 34169 rossros 34170 elcarsg 34296 ballotlemfval 34481 ballotlemgval 34515 kur14lem1 35193 topdifinffinlem 37335 topdifinffin 37336 oe0rif 43274 dssmapfv3d 44008 dssmapnvod 44009 clsk3nimkb 44029 ntrclsneine0lem 44053 ntrclsk2 44057 ntrclskb 44058 ntrclsk13 44060 ntrclsk4 44061 prsal 46316 saldifcl 46317 salexct 46332 salexct2 46337 salexct3 46340 salgencntex 46341 salgensscntex 46342 caragenel 46493 opncldeqv 48890 |
| Copyright terms: Public domain | W3C validator |