![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2822 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 317 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3440 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3956 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3956 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2797 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 ∖ cdif 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-dif 3950 |
This theorem is referenced by: difeq12 4116 difeq2i 4118 difeq2d 4121 symdifeq1 4243 ssdifim 4261 disjdif2 4478 ssdifeq0 4485 sorpsscmpl 7720 2oconcl 8499 oev 8510 sbthlem2 9080 sbth 9089 sbthfi 9198 infdiffi 9649 fin1ai 10284 fin23lem7 10307 fin23lem11 10308 compsscnv 10362 isf34lem1 10363 compss 10367 isf34lem4 10368 fin1a2lem7 10397 pwfseqlem4a 10652 pwfseqlem4 10653 efgmval 19574 efgi 19581 frgpuptinv 19633 gsumcllem 19770 gsumzaddlem 19783 selvfval 21671 fctop 22498 cctop 22500 iscld 22522 clsval2 22545 opncldf1 22579 opncldf2 22580 opncldf3 22581 indiscld 22586 mretopd 22587 restcld 22667 lecldbas 22714 pnrmopn 22838 hauscmplem 22901 elpt 23067 elptr 23068 cfinfil 23388 csdfil 23389 ufilss 23400 filufint 23415 cfinufil 23423 ufinffr 23424 ufilen 23425 prdsxmslem2 24029 lebnumlem1 24468 bcth3 24839 ismbl 25034 ishpg 27999 frgrwopregasn 29558 frgrwopregbsn 29559 disjdifprg 31793 0elsiga 33100 prsiga 33117 sigaclci 33118 difelsiga 33119 unelldsys 33144 sigapildsyslem 33147 sigapildsys 33148 ldgenpisyslem1 33149 isros 33154 unelros 33157 difelros 33158 inelsros 33164 diffiunisros 33165 rossros 33166 elcarsg 33292 ballotlemfval 33476 ballotlemgval 33510 kur14lem1 34185 topdifinffinlem 36216 topdifinffin 36217 oe0rif 42020 dssmapfv3d 42755 dssmapnvod 42756 clsk3nimkb 42776 ntrclsneine0lem 42800 ntrclsk2 42804 ntrclskb 42805 ntrclsk13 42807 ntrclsk4 42808 prsal 45020 saldifcl 45021 salexct 45036 salexct2 45041 salexct3 45044 salgencntex 45045 salgensscntex 45046 caragenel 45197 opncldeqv 47487 |
Copyright terms: Public domain | W3C validator |