| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 3 | 2 | rabbidv 3410 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 4 | dfdif2 3920 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 5 | dfdif2 3920 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: difeq12 4080 difeq2i 4082 difeq2d 4085 symdifeq1 4214 ssdifim 4232 disjdif2 4439 ssdifeq0 4446 sorpsscmpl 7690 2oconcl 8444 oev 8455 sbthlem2 9029 sbth 9038 sbthfi 9140 infdiffi 9587 fin1ai 10222 fin23lem7 10245 fin23lem11 10246 compsscnv 10300 isf34lem1 10301 compss 10305 isf34lem4 10306 fin1a2lem7 10335 pwfseqlem4a 10590 pwfseqlem4 10591 efgmval 19626 efgi 19633 frgpuptinv 19685 gsumcllem 19822 gsumzaddlem 19835 selvfval 22054 fctop 22924 cctop 22926 iscld 22947 clsval2 22970 opncldf1 23004 opncldf2 23005 opncldf3 23006 indiscld 23011 mretopd 23012 restcld 23092 lecldbas 23139 pnrmopn 23263 hauscmplem 23326 elpt 23492 elptr 23493 cfinfil 23813 csdfil 23814 ufilss 23825 filufint 23840 cfinufil 23848 ufinffr 23849 ufilen 23850 prdsxmslem2 24450 lebnumlem1 24893 bcth3 25264 ismbl 25460 ishpg 28739 frgrwopregasn 30295 frgrwopregbsn 30296 disjdifprg 32554 0elsiga 34097 prsiga 34114 sigaclci 34115 difelsiga 34116 unelldsys 34141 sigapildsyslem 34144 sigapildsys 34145 ldgenpisyslem1 34146 isros 34151 unelros 34154 difelros 34155 inelsros 34161 diffiunisros 34162 rossros 34163 elcarsg 34289 ballotlemfval 34474 ballotlemgval 34508 kur14lem1 35186 topdifinffinlem 37328 topdifinffin 37329 oe0rif 43267 dssmapfv3d 44001 dssmapnvod 44002 clsk3nimkb 44022 ntrclsneine0lem 44046 ntrclsk2 44050 ntrclskb 44051 ntrclsk13 44053 ntrclsk4 44054 prsal 46309 saldifcl 46310 salexct 46325 salexct2 46330 salexct3 46333 salgencntex 46334 salgensscntex 46335 caragenel 46486 opncldeqv 48883 |
| Copyright terms: Public domain | W3C validator |