Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2841 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | notbid 322 | . . 3 ⊢ (𝐴 = 𝐵 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑥 ∈ 𝐵)) |
3 | 2 | rabbidv 3393 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵}) |
4 | dfdif2 3868 | . 2 ⊢ (𝐶 ∖ 𝐴) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐴} | |
5 | dfdif2 3868 | . 2 ⊢ (𝐶 ∖ 𝐵) = {𝑥 ∈ 𝐶 ∣ ¬ 𝑥 ∈ 𝐵} | |
6 | 3, 4, 5 | 3eqtr4g 2819 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2112 {crab 3075 ∖ cdif 3856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-rab 3080 df-dif 3862 |
This theorem is referenced by: difeq12 4024 difeq2i 4026 difeq2d 4029 symdifeq1 4150 ssdifim 4168 disjdif2 4377 ssdifeq0 4381 sorpsscmpl 7459 2oconcl 8139 oev 8150 sbthlem2 8650 sbth 8659 infdiffi 9147 fin1ai 9746 fin23lem7 9769 fin23lem11 9770 compsscnv 9824 isf34lem1 9825 compss 9829 isf34lem4 9830 fin1a2lem7 9859 pwfseqlem4a 10114 pwfseqlem4 10115 efgmval 18898 efgi 18905 frgpuptinv 18957 gsumcllem 19089 gsumzaddlem 19102 selvfval 20873 fctop 21697 cctop 21699 iscld 21720 clsval2 21743 opncldf1 21777 opncldf2 21778 opncldf3 21779 indiscld 21784 mretopd 21785 restcld 21865 lecldbas 21912 pnrmopn 22036 hauscmplem 22099 elpt 22265 elptr 22266 cfinfil 22586 csdfil 22587 ufilss 22598 filufint 22613 cfinufil 22621 ufinffr 22622 ufilen 22623 prdsxmslem2 23224 lebnumlem1 23655 bcth3 24024 ismbl 24219 ishpg 26645 frgrwopregasn 28193 frgrwopregbsn 28194 disjdifprg 30429 0elsiga 31594 prsiga 31611 sigaclci 31612 difelsiga 31613 unelldsys 31638 sigapildsyslem 31641 sigapildsys 31642 ldgenpisyslem1 31643 isros 31648 unelros 31651 difelros 31652 inelsros 31658 diffiunisros 31659 rossros 31660 elcarsg 31784 ballotlemfval 31968 ballotlemgval 32002 kur14lem1 32677 topdifinffinlem 35037 topdifinffin 35038 dssmapfv3d 41086 dssmapnvod 41087 clsk3nimkb 41109 ntrclsneine0lem 41133 ntrclsk2 41137 ntrclskb 41138 ntrclsk13 41140 ntrclsk4 41141 prsal 43319 saldifcl 43320 salexct 43333 salexct2 43338 salexct3 43341 salgencntex 43342 salgensscntex 43343 caragenel 43493 opncldeqv 45571 |
Copyright terms: Public domain | W3C validator |