| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| uneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| uneq12d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | uneq12 4163 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Copyright terms: Public domain | W3C validator |