Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > un0 | Structured version Visualization version GIF version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
un0 | ⊢ (𝐴 ∪ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4232 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | biorfi 936 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 227 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅) ↔ 𝑥 ∈ 𝐴) |
4 | 3 | uneqri 4058 | 1 ⊢ (𝐴 ∪ ∅) = 𝐴 |
Copyright terms: Public domain | W3C validator |