Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinxsng | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iinxsng.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iinxsng | ⊢ (𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦 ∈ 𝐵} | |
2 | iinxsng.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
4 | 3 | ralsng 4609 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
5 | 4 | abbi1dv 2878 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦 ∈ 𝐵} = 𝐶) |
6 | 1, 5 | eqtrid 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 {csn 4561 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-sn 4562 df-iin 4927 |
This theorem is referenced by: polatN 37945 |
Copyright terms: Public domain | W3C validator |