MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxsng Structured version   Visualization version   GIF version

Theorem iinxsng 5091
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iinxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 5000 . 2 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵}
2 iinxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2818 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43ralsng 4677 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
54eqabcdv 2867 . 2 (𝐴𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵} = 𝐶)
61, 5eqtrid 2783 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {cab 2708  wral 3060  {csn 4628   ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-sn 4629  df-iin 5000
This theorem is referenced by:  polatN  39266
  Copyright terms: Public domain W3C validator