![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinxsng | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iinxsng.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iinxsng | ⊢ (𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 5000 | . 2 ⊢ ∩ 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦 ∈ 𝐵} | |
2 | iinxsng.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eleq2d 2818 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
4 | 3 | ralsng 4677 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
5 | 4 | eqabcdv 2867 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦 ∈ 𝐵} = 𝐶) |
6 | 1, 5 | eqtrid 2783 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cab 2708 ∀wral 3060 {csn 4628 ∩ ciin 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-v 3475 df-sn 4629 df-iin 5000 |
This theorem is referenced by: polatN 39266 |
Copyright terms: Public domain | W3C validator |