MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxsng Structured version   Visualization version   GIF version

Theorem iinxsng 5013
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iinxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4924 . 2 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵}
2 iinxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2824 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43ralsng 4606 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
54abbi1dv 2877 . 2 (𝐴𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵} = 𝐶)
61, 5eqtrid 2790 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {cab 2715  wral 3063  {csn 4558   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-sn 4559  df-iin 4924
This theorem is referenced by:  polatN  37872
  Copyright terms: Public domain W3C validator