MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq1d Structured version   Visualization version   GIF version

Theorem tpeq1d 4678
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypothesis
Ref Expression
tpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
tpeq1d (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})

Proof of Theorem tpeq1d
StepHypRef Expression
1 tpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 tpeq1 4675 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
31, 2syl 17 1 (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  tpeq123d  4681  symgvalstruct  18919  symgvalstructOLD  18920
  Copyright terms: Public domain W3C validator