MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq2 Structured version   Visualization version   GIF version

Theorem tpeq2 4743
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq2 (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})

Proof of Theorem tpeq2
StepHypRef Expression
1 preq2 4734 . . 3 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
21uneq1d 4167 . 2 (𝐴 = 𝐵 → ({𝐶, 𝐴} ∪ {𝐷}) = ({𝐶, 𝐵} ∪ {𝐷}))
3 df-tp 4631 . 2 {𝐶, 𝐴, 𝐷} = ({𝐶, 𝐴} ∪ {𝐷})
4 df-tp 4631 . 2 {𝐶, 𝐵, 𝐷} = ({𝐶, 𝐵} ∪ {𝐷})
52, 3, 43eqtr4g 2802 1 (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3949  {csn 4626  {cpr 4628  {ctp 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-sn 4627  df-pr 4629  df-tp 4631
This theorem is referenced by:  tpeq2d  4746  fntpb  7229  fztpval  13626  hashtpg  14524  hash3tpde  14532  dvh4dimN  41449  cycl3grtri  47914  grimgrtri  47916  usgrgrtrirex  47917  grlimgrtri  47963  usgrexmpl1tri  47984  lmod1  48409
  Copyright terms: Public domain W3C validator