![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
tpeq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 4738 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
2 | 1 | uneq1d 4162 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐶, 𝐴} ∪ {𝐷}) = ({𝐶, 𝐵} ∪ {𝐷})) |
3 | df-tp 4633 | . 2 ⊢ {𝐶, 𝐴, 𝐷} = ({𝐶, 𝐴} ∪ {𝐷}) | |
4 | df-tp 4633 | . 2 ⊢ {𝐶, 𝐵, 𝐷} = ({𝐶, 𝐵} ∪ {𝐷}) | |
5 | 2, 3, 4 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∪ cun 3946 {csn 4628 {cpr 4630 {ctp 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-sn 4629 df-pr 4631 df-tp 4633 |
This theorem is referenced by: tpeq2d 4750 fntpb 7213 fztpval 13570 hashtpg 14453 dvh4dimN 40782 lmod1 47335 |
Copyright terms: Public domain | W3C validator |