![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
tpeq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 4759 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
2 | 1 | uneq1d 4190 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐶, 𝐴} ∪ {𝐷}) = ({𝐶, 𝐵} ∪ {𝐷})) |
3 | df-tp 4653 | . 2 ⊢ {𝐶, 𝐴, 𝐷} = ({𝐶, 𝐴} ∪ {𝐷}) | |
4 | df-tp 4653 | . 2 ⊢ {𝐶, 𝐵, 𝐷} = ({𝐶, 𝐵} ∪ {𝐷}) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: tpeq2d 4771 fntpb 7246 fztpval 13646 hashtpg 14534 hash3tpde 14542 dvh4dimN 41404 grimgrtri 47798 usgrgrtrirex 47799 grlimgrtri 47820 usgrexmpl1tri 47840 lmod1 48221 |
Copyright terms: Public domain | W3C validator |