Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq2 Structured version   Visualization version   GIF version

Theorem tpeq2 4664
 Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq2 (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})

Proof of Theorem tpeq2
StepHypRef Expression
1 preq2 4655 . . 3 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
21uneq1d 4124 . 2 (𝐴 = 𝐵 → ({𝐶, 𝐴} ∪ {𝐷}) = ({𝐶, 𝐵} ∪ {𝐷}))
3 df-tp 4555 . 2 {𝐶, 𝐴, 𝐷} = ({𝐶, 𝐴} ∪ {𝐷})
4 df-tp 4555 . 2 {𝐶, 𝐵, 𝐷} = ({𝐶, 𝐵} ∪ {𝐷})
52, 3, 43eqtr4g 2884 1 (𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∪ cun 3917  {csn 4550  {cpr 4552  {ctp 4554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-un 3924  df-sn 4551  df-pr 4553  df-tp 4555 This theorem is referenced by:  tpeq2d  4667  fntpb  6963  fztpval  12973  hashtpg  13848  dvh4dimN  38688  lmod1  44827
 Copyright terms: Public domain W3C validator