MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclexlem Structured version   Visualization version   GIF version

Theorem trclexlem 14941
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trclexlem (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)

Proof of Theorem trclexlem
StepHypRef Expression
1 dmexg 7894 . . 3 (𝑅𝑉 → dom 𝑅 ∈ V)
2 rnexg 7895 . . 3 (𝑅𝑉 → ran 𝑅 ∈ V)
31, 2xpexd 7738 . 2 (𝑅𝑉 → (dom 𝑅 × ran 𝑅) ∈ V)
4 unexg 7736 . 2 ((𝑅𝑉 ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
53, 4mpdan 686 1 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3475  cun 3947   × cxp 5675  dom cdm 5677  ran crn 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688
This theorem is referenced by:  trclublem  14942  trclfv  14947  cnvtrcl0  42377
  Copyright terms: Public domain W3C validator