| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trclexlem | Structured version Visualization version GIF version | ||
| Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.) |
| Ref | Expression |
|---|---|
| trclexlem | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7906 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 2 | rnexg 7907 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
| 3 | 1, 2 | xpexd 7754 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) |
| 4 | unexg 7746 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (dom 𝑅 × ran 𝑅) ∈ V) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) | |
| 5 | 3, 4 | mpdan 687 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3464 ∪ cun 3931 × cxp 5665 dom cdm 5667 ran crn 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 |
| This theorem is referenced by: trclublem 15017 trclfv 15022 cnvtrcl0 43584 |
| Copyright terms: Public domain | W3C validator |