![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trel3 | Structured version Visualization version GIF version |
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
trel3 | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1095 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴))) | |
2 | trel 5274 | . . . 4 ⊢ (Tr 𝐴 → ((𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐶 ∈ 𝐴)) | |
3 | 2 | anim2d 612 | . . 3 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ (𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴)) → (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
4 | 1, 3 | biimtrid 241 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
5 | trel 5274 | . 2 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | |
6 | 4, 5 | syld 47 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 |
This theorem is referenced by: ordelord 6386 |
Copyright terms: Public domain | W3C validator |