MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trel3 Structured version   Visualization version   GIF version

Theorem trel3 5199
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
trel3 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))

Proof of Theorem trel3
StepHypRef Expression
1 3anass 1094 . . 3 ((𝐵𝐶𝐶𝐷𝐷𝐴) ↔ (𝐵𝐶 ∧ (𝐶𝐷𝐷𝐴)))
2 trel 5198 . . . 4 (Tr 𝐴 → ((𝐶𝐷𝐷𝐴) → 𝐶𝐴))
32anim2d 612 . . 3 (Tr 𝐴 → ((𝐵𝐶 ∧ (𝐶𝐷𝐷𝐴)) → (𝐵𝐶𝐶𝐴)))
41, 3syl5bi 241 . 2 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → (𝐵𝐶𝐶𝐴)))
5 trel 5198 . 2 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
64, 5syld 47 1 (Tr 𝐴 → ((𝐵𝐶𝐶𝐷𝐷𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  Tr wtr 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840  df-tr 5192
This theorem is referenced by:  ordelord  6288
  Copyright terms: Public domain W3C validator