| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trel | Structured version Visualization version GIF version | ||
| Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| trel | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 5202 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
| 2 | eleq12 2823 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝑥 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | eleq1 2821 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 5 | 2, 4 | anbi12d 632 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
| 6 | eleq1 2821 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 8 | 5, 7 | imbi12d 344 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
| 9 | 8 | spc2gv 3551 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
| 10 | 9 | pm2.43b 55 | . 2 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 Tr wtr 5200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-uni 4859 df-tr 5201 |
| This theorem is referenced by: trel3 5209 ordn2lp 6331 ordelord 6333 tz7.7 6337 ordtr1 6355 suctr 6399 trsuc 6400 trom 7811 elnn 7813 epfrs 9628 tcrank 9784 trssfir1om 35143 trssfir1omregs 35153 dfon2lem6 35851 tratrb 44653 truniALT 44658 onfrALTlem2 44663 trelded 44682 pwtrrVD 44941 suctrALT 44942 suctrALT2VD 44952 suctrALT2 44953 tratrbVD 44977 truniALTVD 44994 trintALTVD 44996 trintALT 44997 onfrALTlem2VD 45005 suctrALTcf 45038 suctrALTcfVD 45039 traxext 45094 modelac8prim 45109 |
| Copyright terms: Public domain | W3C validator |