MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trel Structured version   Visualization version   GIF version

Theorem trel 5206
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
trel (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))

Proof of Theorem trel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5200 . 2 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2 eleq12 2821 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑦𝑥𝐵𝐶))
3 eleq1 2819 . . . . . . 7 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
43adantl 481 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑥𝐴𝐶𝐴))
52, 4anbi12d 632 . . . . 5 ((𝑦 = 𝐵𝑥 = 𝐶) → ((𝑦𝑥𝑥𝐴) ↔ (𝐵𝐶𝐶𝐴)))
6 eleq1 2819 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
76adantr 480 . . . . 5 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑦𝐴𝐵𝐴))
85, 7imbi12d 344 . . . 4 ((𝑦 = 𝐵𝑥 = 𝐶) → (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)))
98spc2gv 3555 . . 3 ((𝐵𝐶𝐶𝐴) → (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)))
109pm2.43b 55 . 2 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
111, 10sylbi 217 1 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  Tr wtr 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-uni 4860  df-tr 5199
This theorem is referenced by:  trel3  5207  ordn2lp  6326  ordelord  6328  tz7.7  6332  ordtr1  6350  suctr  6394  trsuc  6395  trom  7805  elnn  7807  epfrs  9621  tcrank  9774  trssfir1omregs  35120  dfon2lem6  35821  tratrb  44568  truniALT  44573  onfrALTlem2  44578  trelded  44597  pwtrrVD  44856  suctrALT  44857  suctrALT2VD  44867  suctrALT2  44868  tratrbVD  44892  truniALTVD  44909  trintALTVD  44911  trintALT  44912  onfrALTlem2VD  44920  suctrALTcf  44953  suctrALTcfVD  44954  traxext  45009  modelac8prim  45024
  Copyright terms: Public domain W3C validator