MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trel Structured version   Visualization version   GIF version

Theorem trel 5265
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
trel (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))

Proof of Theorem trel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5258 . 2 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2 eleq12 2815 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑦𝑥𝐵𝐶))
3 eleq1 2813 . . . . . . 7 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
43adantl 481 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑥𝐴𝐶𝐴))
52, 4anbi12d 630 . . . . 5 ((𝑦 = 𝐵𝑥 = 𝐶) → ((𝑦𝑥𝑥𝐴) ↔ (𝐵𝐶𝐶𝐴)))
6 eleq1 2813 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
76adantr 480 . . . . 5 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑦𝐴𝐵𝐴))
85, 7imbi12d 344 . . . 4 ((𝑦 = 𝐵𝑥 = 𝐶) → (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)))
98spc2gv 3582 . . 3 ((𝐵𝐶𝐶𝐴) → (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)))
109pm2.43b 55 . 2 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
111, 10sylbi 216 1 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  Tr wtr 5256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3948  df-ss 3958  df-uni 4901  df-tr 5257
This theorem is referenced by:  trel3  5266  ordn2lp  6375  ordelord  6377  tz7.7  6381  ordtr1  6398  suctr  6441  trsuc  6442  trom  7858  elnn  7860  epfrs  9723  tcrank  9876  dfon2lem6  35256  tratrb  43811  truniALT  43816  onfrALTlem2  43821  trelded  43840  pwtrrVD  44100  suctrALT  44101  suctrALT2VD  44111  suctrALT2  44112  tratrbVD  44136  truniALTVD  44153  trintALTVD  44155  trintALT  44156  onfrALTlem2VD  44164  suctrALTcf  44197  suctrALTcfVD  44198
  Copyright terms: Public domain W3C validator