| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trel | Structured version Visualization version GIF version | ||
| Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| trel | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 5216 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
| 2 | eleq12 2818 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝑥 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | eleq1 2816 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 5 | 2, 4 | anbi12d 632 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
| 6 | eleq1 2816 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 8 | 5, 7 | imbi12d 344 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
| 9 | 8 | spc2gv 3566 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
| 10 | 9 | pm2.43b 55 | . 2 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Tr wtr 5214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 |
| This theorem is referenced by: trel3 5224 ordn2lp 6352 ordelord 6354 tz7.7 6358 ordtr1 6376 suctr 6420 trsuc 6421 trom 7851 elnn 7853 epfrs 9684 tcrank 9837 dfon2lem6 35776 tratrb 44526 truniALT 44531 onfrALTlem2 44536 trelded 44555 pwtrrVD 44814 suctrALT 44815 suctrALT2VD 44825 suctrALT2 44826 tratrbVD 44850 truniALTVD 44867 trintALTVD 44869 trintALT 44870 onfrALTlem2VD 44878 suctrALTcf 44911 suctrALTcfVD 44912 traxext 44967 modelac8prim 44982 |
| Copyright terms: Public domain | W3C validator |