MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trel Structured version   Visualization version   GIF version

Theorem trel 5226
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
trel (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))

Proof of Theorem trel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5219 . 2 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2 eleq12 2819 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑦𝑥𝐵𝐶))
3 eleq1 2817 . . . . . . 7 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
43adantl 481 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑥𝐴𝐶𝐴))
52, 4anbi12d 632 . . . . 5 ((𝑦 = 𝐵𝑥 = 𝐶) → ((𝑦𝑥𝑥𝐴) ↔ (𝐵𝐶𝐶𝐴)))
6 eleq1 2817 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝐴𝐵𝐴))
76adantr 480 . . . . 5 ((𝑦 = 𝐵𝑥 = 𝐶) → (𝑦𝐴𝐵𝐴))
85, 7imbi12d 344 . . . 4 ((𝑦 = 𝐵𝑥 = 𝐶) → (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)))
98spc2gv 3569 . . 3 ((𝐵𝐶𝐶𝐴) → (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)))
109pm2.43b 55 . 2 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
111, 10sylbi 217 1 (Tr 𝐴 → ((𝐵𝐶𝐶𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Tr wtr 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-uni 4875  df-tr 5218
This theorem is referenced by:  trel3  5227  ordn2lp  6355  ordelord  6357  tz7.7  6361  ordtr1  6379  suctr  6423  trsuc  6424  trom  7854  elnn  7856  epfrs  9691  tcrank  9844  dfon2lem6  35783  tratrb  44533  truniALT  44538  onfrALTlem2  44543  trelded  44562  pwtrrVD  44821  suctrALT  44822  suctrALT2VD  44832  suctrALT2  44833  tratrbVD  44857  truniALTVD  44874  trintALTVD  44876  trintALT  44877  onfrALTlem2VD  44885  suctrALTcf  44918  suctrALTcfVD  44919  traxext  44974  modelac8prim  44989
  Copyright terms: Public domain W3C validator