MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelord Structured version   Visualization version   GIF version

Theorem ordelord 6204
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord ((Ord 𝐴𝐵𝐴) → Ord 𝐵)

Proof of Theorem ordelord
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21anbi2d 632 . . . 4 (𝑥 = 𝐵 → ((Ord 𝐴𝑥𝐴) ↔ (Ord 𝐴𝐵𝐴)))
3 ordeq 6189 . . . 4 (𝑥 = 𝐵 → (Ord 𝑥 ↔ Ord 𝐵))
42, 3imbi12d 348 . . 3 (𝑥 = 𝐵 → (((Ord 𝐴𝑥𝐴) → Ord 𝑥) ↔ ((Ord 𝐴𝐵𝐴) → Ord 𝐵)))
5 simpll 767 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → Ord 𝐴)
6 3anrot 1101 . . . . . . . . . . . 12 ((𝑥𝐴𝑧𝑦𝑦𝑥) ↔ (𝑧𝑦𝑦𝑥𝑥𝐴))
7 3anass 1096 . . . . . . . . . . . 12 ((𝑥𝐴𝑧𝑦𝑦𝑥) ↔ (𝑥𝐴 ∧ (𝑧𝑦𝑦𝑥)))
86, 7bitr3i 280 . . . . . . . . . . 11 ((𝑧𝑦𝑦𝑥𝑥𝐴) ↔ (𝑥𝐴 ∧ (𝑧𝑦𝑦𝑥)))
9 ordtr 6196 . . . . . . . . . . . 12 (Ord 𝐴 → Tr 𝐴)
10 trel3 5154 . . . . . . . . . . . 12 (Tr 𝐴 → ((𝑧𝑦𝑦𝑥𝑥𝐴) → 𝑧𝐴))
119, 10syl 17 . . . . . . . . . . 11 (Ord 𝐴 → ((𝑧𝑦𝑦𝑥𝑥𝐴) → 𝑧𝐴))
128, 11syl5bir 246 . . . . . . . . . 10 (Ord 𝐴 → ((𝑥𝐴 ∧ (𝑧𝑦𝑦𝑥)) → 𝑧𝐴))
1312impl 459 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → 𝑧𝐴)
14 trel 5153 . . . . . . . . . . . . 13 (Tr 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
159, 14syl 17 . . . . . . . . . . . 12 (Ord 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
1615expcomd 420 . . . . . . . . . . 11 (Ord 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
1716imp31 421 . . . . . . . . . 10 (((Ord 𝐴𝑥𝐴) ∧ 𝑦𝑥) → 𝑦𝐴)
1817adantrl 716 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → 𝑦𝐴)
19 simplr 769 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → 𝑥𝐴)
20 ordwe 6195 . . . . . . . . . 10 (Ord 𝐴 → E We 𝐴)
21 wetrep 5528 . . . . . . . . . 10 (( E We 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2220, 21sylan 583 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
235, 13, 18, 19, 22syl13anc 1373 . . . . . . . 8 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2423ex 416 . . . . . . 7 ((Ord 𝐴𝑥𝐴) → ((𝑧𝑦𝑦𝑥) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥)))
2524pm2.43d 53 . . . . . 6 ((Ord 𝐴𝑥𝐴) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2625alrimivv 1935 . . . . 5 ((Ord 𝐴𝑥𝐴) → ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
27 dftr2 5148 . . . . 5 (Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2826, 27sylibr 237 . . . 4 ((Ord 𝐴𝑥𝐴) → Tr 𝑥)
29 trss 5155 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
309, 29syl 17 . . . . . 6 (Ord 𝐴 → (𝑥𝐴𝑥𝐴))
31 wess 5522 . . . . . 6 (𝑥𝐴 → ( E We 𝐴 → E We 𝑥))
3230, 20, 31syl6ci 71 . . . . 5 (Ord 𝐴 → (𝑥𝐴 → E We 𝑥))
3332imp 410 . . . 4 ((Ord 𝐴𝑥𝐴) → E We 𝑥)
34 df-ord 6185 . . . 4 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
3528, 33, 34sylanbrc 586 . . 3 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
364, 35vtoclg 3473 . 2 (𝐵𝐴 → ((Ord 𝐴𝐵𝐴) → Ord 𝐵))
3736anabsi7 671 1 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wal 1540   = wceq 1542  wcel 2114  wss 3853  Tr wtr 5146   E cep 5443   We wwe 5492  Ord word 6181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ne 2936  df-ral 3059  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-tr 5147  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-ord 6185
This theorem is referenced by:  tron  6205  ordelon  6206  ordtr2  6226  ordintdif  6231  ordsuc  7560  ordsucss  7564  ordsucelsuc  7568  ordsucuniel  7570  limsssuc  7596  smores  8030  smo11  8042  smoord  8043  smoword  8044  smogt  8045  smorndom  8046  rdglim2  8109  oesuclem  8193  ordtypelem3  9069  r1val1  9300  rankr1ag  9316  fin23lem24  9834  onsuct0  34285  dford3  40462  ordpss  41647
  Copyright terms: Public domain W3C validator