MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trss Structured version   Visualization version   GIF version

Theorem trss 5208
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
trss (Tr 𝐴 → (𝐵𝐴𝐵𝐴))

Proof of Theorem trss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dftr3 5203 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
2 sseq1 3960 . . 3 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
32rspccv 3574 . 2 (∀𝑥𝐴 𝑥𝐴 → (𝐵𝐴𝐵𝐴))
41, 3sylbi 217 1 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  wss 3902  Tr wtr 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3919  df-uni 4860  df-tr 5199
This theorem is referenced by:  trin  5209  triun  5212  triin  5214  trintss  5216  tz7.2  5599  trpred  6278  ordelss  6322  ordelord  6328  tz7.7  6332  trsucss  6396  tc2  9630  tcel  9633  r1ord3g  9672  r1ord2  9674  r1pwss  9677  rankwflemb  9686  r1elwf  9689  r1elssi  9698  uniwf  9712  itunitc1  10311  wunelss  10599  tskr1om2  10659  tskuni  10674  tskurn  10680  gruelss  10685  tz9.1regs  35128  dfon2lem6  35828  dfon2lem9  35831  setindtr  43063  dford3lem1  43065  ordelordALT  44576  trsspwALT  44856  trsspwALT2  44857  trsspwALT3  44858  pwtrVD  44862  ordelordALTVD  44905  ralabso  45007  rexabso  45008  modelaxrep  45020  omelaxinf2  45028
  Copyright terms: Public domain W3C validator