| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5235 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 2 | sseq1 3984 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | rspccv 3598 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 Tr wtr 5229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-uni 4884 df-tr 5230 |
| This theorem is referenced by: trin 5241 triun 5244 triin 5246 trintss 5248 tz7.2 5637 trpred 6320 ordelss 6368 ordelord 6374 tz7.7 6378 trsucss 6442 tc2 9756 tcel 9759 r1ord3g 9793 r1ord2 9795 r1pwss 9798 rankwflemb 9807 r1elwf 9810 r1elssi 9819 uniwf 9833 itunitc1 10434 wunelss 10722 tskr1om2 10782 tskuni 10797 tskurn 10803 gruelss 10808 dfon2lem6 35806 dfon2lem9 35809 setindtr 43048 dford3lem1 43050 ordelordALT 44562 trsspwALT 44842 trsspwALT2 44843 trsspwALT3 44844 pwtrVD 44848 ordelordALTVD 44891 ralabso 44993 rexabso 44994 modelaxrep 45006 omelaxinf2 45014 |
| Copyright terms: Public domain | W3C validator |