MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trss Structured version   Visualization version   GIF version

Theorem trss 5225
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
trss (Tr 𝐴 → (𝐵𝐴𝐵𝐴))

Proof of Theorem trss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dftr3 5220 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
2 sseq1 3972 . . 3 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
32rspccv 3585 . 2 (∀𝑥𝐴 𝑥𝐴 → (𝐵𝐴𝐵𝐴))
41, 3sylbi 217 1 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  wss 3914  Tr wtr 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-ss 3931  df-uni 4872  df-tr 5215
This theorem is referenced by:  trin  5226  triun  5229  triin  5231  trintss  5233  tz7.2  5621  trpred  6304  ordelss  6348  ordelord  6354  tz7.7  6358  trsucss  6422  tc2  9695  tcel  9698  r1ord3g  9732  r1ord2  9734  r1pwss  9737  rankwflemb  9746  r1elwf  9749  r1elssi  9758  uniwf  9772  itunitc1  10373  wunelss  10661  tskr1om2  10721  tskuni  10736  tskurn  10742  gruelss  10747  dfon2lem6  35776  dfon2lem9  35779  setindtr  43013  dford3lem1  43015  ordelordALT  44527  trsspwALT  44807  trsspwALT2  44808  trsspwALT3  44809  pwtrVD  44813  ordelordALTVD  44856  ralabso  44958  rexabso  44959  modelaxrep  44971  omelaxinf2  44979
  Copyright terms: Public domain W3C validator