![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5272 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 4008 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3610 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3062 ⊆ wss 3949 Tr wtr 5266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-tr 5267 |
This theorem is referenced by: trin 5278 triun 5281 triin 5283 trintss 5285 tz7.2 5661 trpred 6333 ordelss 6381 ordelord 6387 tz7.7 6391 trsucss 6453 omsindsOLD 7877 tc2 9737 tcel 9740 r1ord3g 9774 r1ord2 9776 r1pwss 9779 rankwflemb 9788 r1elwf 9791 r1elssi 9800 uniwf 9814 itunitc1 10415 wunelss 10703 tskr1om2 10763 tskuni 10778 tskurn 10784 gruelss 10789 dfon2lem6 34760 dfon2lem9 34763 setindtr 41763 dford3lem1 41765 ordelordALT 43298 trsspwALT 43579 trsspwALT2 43580 trsspwALT3 43581 pwtrVD 43585 ordelordALTVD 43628 |
Copyright terms: Public domain | W3C validator |