Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5195 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 3946 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3558 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 Tr wtr 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 |
This theorem is referenced by: trin 5201 triun 5204 triin 5206 trintss 5208 tz7.2 5573 trpred 6234 ordelss 6282 ordelord 6288 tz7.7 6292 trsucss 6351 omsindsOLD 7734 tc2 9500 tcel 9503 r1ord3g 9537 r1ord2 9539 r1pwss 9542 rankwflemb 9551 r1elwf 9554 r1elssi 9563 uniwf 9577 itunitc1 10176 wunelss 10464 tskr1om2 10524 tskuni 10539 tskurn 10545 gruelss 10550 dfon2lem6 33764 dfon2lem9 33767 setindtr 40846 dford3lem1 40848 ordelordALT 42157 trsspwALT 42438 trsspwALT2 42439 trsspwALT3 42440 pwtrVD 42444 ordelordALTVD 42487 |
Copyright terms: Public domain | W3C validator |