| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5207 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 2 | sseq1 3956 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | rspccv 3570 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 Tr wtr 5202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-uni 4861 df-tr 5203 |
| This theorem is referenced by: trin 5213 triun 5216 triin 5218 trintss 5220 tz7.2 5604 trpred 6285 ordelss 6329 ordelord 6335 tz7.7 6339 trsucss 6403 tc2 9639 tcel 9642 r1ord3g 9681 r1ord2 9683 r1pwss 9686 rankwflemb 9695 r1elwf 9698 r1elssi 9707 uniwf 9721 itunitc1 10320 wunelss 10608 tskr1om2 10668 tskuni 10683 tskurn 10689 gruelss 10694 tz9.1regs 35153 dfon2lem6 35853 dfon2lem9 35856 setindtr 43144 dford3lem1 43146 ordelordALT 44657 trsspwALT 44937 trsspwALT2 44938 trsspwALT3 44939 pwtrVD 44943 ordelordALTVD 44986 ralabso 45088 rexabso 45089 modelaxrep 45101 omelaxinf2 45109 |
| Copyright terms: Public domain | W3C validator |