![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5289 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 4034 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3632 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 |
This theorem is referenced by: trin 5295 triun 5298 triin 5300 trintss 5302 tz7.2 5683 trpred 6363 ordelss 6411 ordelord 6417 tz7.7 6421 trsucss 6483 omsindsOLD 7925 tc2 9811 tcel 9814 r1ord3g 9848 r1ord2 9850 r1pwss 9853 rankwflemb 9862 r1elwf 9865 r1elssi 9874 uniwf 9888 itunitc1 10489 wunelss 10777 tskr1om2 10837 tskuni 10852 tskurn 10858 gruelss 10863 dfon2lem6 35752 dfon2lem9 35755 setindtr 42981 dford3lem1 42983 ordelordALT 44508 trsspwALT 44789 trsspwALT2 44790 trsspwALT3 44791 pwtrVD 44795 ordelordALTVD 44838 |
Copyright terms: Public domain | W3C validator |