| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5203 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 2 | sseq1 3960 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | rspccv 3574 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 Tr wtr 5198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3919 df-uni 4860 df-tr 5199 |
| This theorem is referenced by: trin 5209 triun 5212 triin 5214 trintss 5216 tz7.2 5599 trpred 6278 ordelss 6322 ordelord 6328 tz7.7 6332 trsucss 6396 tc2 9630 tcel 9633 r1ord3g 9672 r1ord2 9674 r1pwss 9677 rankwflemb 9686 r1elwf 9689 r1elssi 9698 uniwf 9712 itunitc1 10311 wunelss 10599 tskr1om2 10659 tskuni 10674 tskurn 10680 gruelss 10685 tz9.1regs 35128 dfon2lem6 35828 dfon2lem9 35831 setindtr 43063 dford3lem1 43065 ordelordALT 44576 trsspwALT 44856 trsspwALT2 44857 trsspwALT3 44858 pwtrVD 44862 ordelordALTVD 44905 ralabso 45007 rexabso 45008 modelaxrep 45020 omelaxinf2 45028 |
| Copyright terms: Public domain | W3C validator |