| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5220 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 2 | sseq1 3972 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | rspccv 3585 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 Tr wtr 5214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 |
| This theorem is referenced by: trin 5226 triun 5229 triin 5231 trintss 5233 tz7.2 5621 trpred 6304 ordelss 6348 ordelord 6354 tz7.7 6358 trsucss 6422 tc2 9695 tcel 9698 r1ord3g 9732 r1ord2 9734 r1pwss 9737 rankwflemb 9746 r1elwf 9749 r1elssi 9758 uniwf 9772 itunitc1 10373 wunelss 10661 tskr1om2 10721 tskuni 10736 tskurn 10742 gruelss 10747 dfon2lem6 35776 dfon2lem9 35779 setindtr 43013 dford3lem1 43015 ordelordALT 44527 trsspwALT 44807 trsspwALT2 44808 trsspwALT3 44809 pwtrVD 44813 ordelordALTVD 44856 ralabso 44958 rexabso 44959 modelaxrep 44971 omelaxinf2 44979 |
| Copyright terms: Public domain | W3C validator |