| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5223 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 2 | sseq1 3975 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | rspccv 3588 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 Tr wtr 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 |
| This theorem is referenced by: trin 5229 triun 5232 triin 5234 trintss 5236 tz7.2 5624 trpred 6307 ordelss 6351 ordelord 6357 tz7.7 6361 trsucss 6425 tc2 9702 tcel 9705 r1ord3g 9739 r1ord2 9741 r1pwss 9744 rankwflemb 9753 r1elwf 9756 r1elssi 9765 uniwf 9779 itunitc1 10380 wunelss 10668 tskr1om2 10728 tskuni 10743 tskurn 10749 gruelss 10754 dfon2lem6 35783 dfon2lem9 35786 setindtr 43020 dford3lem1 43022 ordelordALT 44534 trsspwALT 44814 trsspwALT2 44815 trsspwALT3 44816 pwtrVD 44820 ordelordALTVD 44863 ralabso 44965 rexabso 44966 modelaxrep 44978 omelaxinf2 44986 |
| Copyright terms: Public domain | W3C validator |