![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5271 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 4007 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3609 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 |
This theorem is referenced by: trin 5277 triun 5280 triin 5282 trintss 5284 tz7.2 5660 trpred 6332 ordelss 6380 ordelord 6386 tz7.7 6390 trsucss 6452 omsindsOLD 7876 tc2 9736 tcel 9739 r1ord3g 9773 r1ord2 9775 r1pwss 9778 rankwflemb 9787 r1elwf 9790 r1elssi 9799 uniwf 9813 itunitc1 10414 wunelss 10702 tskr1om2 10762 tskuni 10777 tskurn 10783 gruelss 10788 dfon2lem6 34755 dfon2lem9 34758 setindtr 41753 dford3lem1 41755 ordelordALT 43288 trsspwALT 43569 trsspwALT2 43570 trsspwALT3 43571 pwtrVD 43575 ordelordALTVD 43618 |
Copyright terms: Public domain | W3C validator |