| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 5207 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 2 | sseq1 3963 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 2 | rspccv 3576 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 Tr wtr 5202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-ss 3922 df-uni 4862 df-tr 5203 |
| This theorem is referenced by: trin 5213 triun 5216 triin 5218 trintss 5220 tz7.2 5606 trpred 6283 ordelss 6327 ordelord 6333 tz7.7 6337 trsucss 6401 tc2 9657 tcel 9660 r1ord3g 9694 r1ord2 9696 r1pwss 9699 rankwflemb 9708 r1elwf 9711 r1elssi 9720 uniwf 9734 itunitc1 10333 wunelss 10621 tskr1om2 10681 tskuni 10696 tskurn 10702 gruelss 10707 tz9.1regs 35069 dfon2lem6 35764 dfon2lem9 35767 setindtr 43000 dford3lem1 43002 ordelordALT 44514 trsspwALT 44794 trsspwALT2 44795 trsspwALT3 44796 pwtrVD 44800 ordelordALTVD 44843 ralabso 44945 rexabso 44946 modelaxrep 44958 omelaxinf2 44966 |
| Copyright terms: Public domain | W3C validator |