![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5270 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 4020 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3618 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 Tr wtr 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-v 3479 df-ss 3979 df-uni 4912 df-tr 5265 |
This theorem is referenced by: trin 5276 triun 5279 triin 5281 trintss 5283 tz7.2 5671 trpred 6353 ordelss 6401 ordelord 6407 tz7.7 6411 trsucss 6473 omsindsOLD 7908 tc2 9779 tcel 9782 r1ord3g 9816 r1ord2 9818 r1pwss 9821 rankwflemb 9830 r1elwf 9833 r1elssi 9842 uniwf 9856 itunitc1 10457 wunelss 10745 tskr1om2 10805 tskuni 10820 tskurn 10826 gruelss 10831 dfon2lem6 35769 dfon2lem9 35772 setindtr 43012 dford3lem1 43014 ordelordALT 44534 trsspwALT 44815 trsspwALT2 44816 trsspwALT3 44817 pwtrVD 44821 ordelordALTVD 44864 modelaxrep 44945 |
Copyright terms: Public domain | W3C validator |