Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trss | Structured version Visualization version GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 5191 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
2 | sseq1 3942 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 2 | rspccv 3549 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 Tr wtr 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 |
This theorem is referenced by: trin 5197 triun 5200 triin 5202 trintss 5204 tz7.2 5564 trpred 6223 ordelss 6267 ordelord 6273 tz7.7 6277 trsucss 6336 omsindsOLD 7709 tc2 9431 tcel 9434 r1ord3g 9468 r1ord2 9470 r1pwss 9473 rankwflemb 9482 r1elwf 9485 r1elssi 9494 uniwf 9508 itunitc1 10107 wunelss 10395 tskr1om2 10455 tskuni 10470 tskurn 10476 gruelss 10481 dfon2lem6 33670 dfon2lem9 33673 setindtr 40762 dford3lem1 40764 ordelordALT 42046 trsspwALT 42327 trsspwALT2 42328 trsspwALT3 42329 pwtrVD 42333 ordelordALTVD 42376 |
Copyright terms: Public domain | W3C validator |