MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trrelssd Structured version   Visualization version   GIF version

Theorem trrelssd 14612
Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
trrelssd.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
trrelssd.s (𝜑𝑆𝑅)
trrelssd.t (𝜑𝑇𝑅)
Assertion
Ref Expression
trrelssd (𝜑 → (𝑆𝑇) ⊆ 𝑅)

Proof of Theorem trrelssd
StepHypRef Expression
1 trrelssd.s . . 3 (𝜑𝑆𝑅)
2 trrelssd.t . . 3 (𝜑𝑇𝑅)
31, 2coss12d 14611 . 2 (𝜑 → (𝑆𝑇) ⊆ (𝑅𝑅))
4 trrelssd.r . 2 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
53, 4sstrd 3927 1 (𝜑 → (𝑆𝑇) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-co 5589
This theorem is referenced by:  trclfvlb2  14649  trrelind  41162  iunrelexpmin1  41205  iunrelexpmin2  41209
  Copyright terms: Public domain W3C validator