| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelind | Structured version Visualization version GIF version | ||
| Description: The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| trrelind.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| trrelind.s | ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
| trrelind.t | ⊢ (𝜑 → 𝑇 = (𝑅 ∩ 𝑆)) |
| Ref | Expression |
|---|---|
| trrelind | ⊢ (𝜑 → (𝑇 ∘ 𝑇) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trrelind.r | . . . 4 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
| 2 | inss1 4208 | . . . . 5 ⊢ (𝑅 ∩ 𝑆) ⊆ 𝑅 | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑅 ∩ 𝑆) ⊆ 𝑅) |
| 4 | 1, 3, 3 | trrelssd 14949 | . . 3 ⊢ (𝜑 → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ 𝑅) |
| 5 | trrelind.s | . . . 4 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | |
| 6 | inss2 4209 | . . . . 5 ⊢ (𝑅 ∩ 𝑆) ⊆ 𝑆 | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑅 ∩ 𝑆) ⊆ 𝑆) |
| 8 | 5, 7, 7 | trrelssd 14949 | . . 3 ⊢ (𝜑 → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ 𝑆) |
| 9 | 4, 8 | ssind 4212 | . 2 ⊢ (𝜑 → ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆)) ⊆ (𝑅 ∩ 𝑆)) |
| 10 | trrelind.t | . . 3 ⊢ (𝜑 → 𝑇 = (𝑅 ∩ 𝑆)) | |
| 11 | 10, 10 | coeq12d 5836 | . 2 ⊢ (𝜑 → (𝑇 ∘ 𝑇) = ((𝑅 ∩ 𝑆) ∘ (𝑅 ∩ 𝑆))) |
| 12 | 9, 11, 10 | 3sstr4d 4010 | 1 ⊢ (𝜑 → (𝑇 ∘ 𝑇) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3921 ⊆ wss 3922 ∘ ccom 5650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-in 3929 df-ss 3939 df-br 5116 df-opab 5178 df-co 5655 |
| This theorem is referenced by: xpintrreld 43627 |
| Copyright terms: Public domain | W3C validator |