Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelind Structured version   Visualization version   GIF version

Theorem trrelind 41162
Description: The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019.)
Hypotheses
Ref Expression
trrelind.r (𝜑 → (𝑅𝑅) ⊆ 𝑅)
trrelind.s (𝜑 → (𝑆𝑆) ⊆ 𝑆)
trrelind.t (𝜑𝑇 = (𝑅𝑆))
Assertion
Ref Expression
trrelind (𝜑 → (𝑇𝑇) ⊆ 𝑇)

Proof of Theorem trrelind
StepHypRef Expression
1 trrelind.r . . . 4 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2 inss1 4159 . . . . 5 (𝑅𝑆) ⊆ 𝑅
32a1i 11 . . . 4 (𝜑 → (𝑅𝑆) ⊆ 𝑅)
41, 3, 3trrelssd 14612 . . 3 (𝜑 → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ 𝑅)
5 trrelind.s . . . 4 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
6 inss2 4160 . . . . 5 (𝑅𝑆) ⊆ 𝑆
76a1i 11 . . . 4 (𝜑 → (𝑅𝑆) ⊆ 𝑆)
85, 7, 7trrelssd 14612 . . 3 (𝜑 → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ 𝑆)
94, 8ssind 4163 . 2 (𝜑 → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))
10 trrelind.t . . 3 (𝜑𝑇 = (𝑅𝑆))
1110, 10coeq12d 5762 . 2 (𝜑 → (𝑇𝑇) = ((𝑅𝑆) ∘ (𝑅𝑆)))
129, 11, 103sstr4d 3964 1 (𝜑 → (𝑇𝑇) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  wss 3883  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-co 5589
This theorem is referenced by:  xpintrreld  41163
  Copyright terms: Public domain W3C validator