![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coss12d | Structured version Visualization version GIF version |
Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
coss12d.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
coss12d.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Ref | Expression |
---|---|
coss12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss12d.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | |
2 | 1 | ssbrd 4931 | . . . . 5 ⊢ (𝜑 → (𝑥𝐶𝑦 → 𝑥𝐷𝑦)) |
3 | coss12d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
4 | 3 | ssbrd 4931 | . . . . 5 ⊢ (𝜑 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) |
5 | 2, 4 | anim12d 602 | . . . 4 ⊢ (𝜑 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧))) |
6 | 5 | eximdv 1960 | . . 3 ⊢ (𝜑 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧))) |
7 | 6 | ssopab2dv 5243 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧)}) |
8 | df-co 5366 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
9 | df-co 5366 | . 2 ⊢ (𝐵 ∘ 𝐷) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧)} | |
10 | 7, 8, 9 | 3sstr4g 3865 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∃wex 1823 ⊆ wss 3792 class class class wbr 4888 {copab 4950 ∘ ccom 5361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-in 3799 df-ss 3806 df-br 4889 df-opab 4951 df-co 5366 |
This theorem is referenced by: trrelssd 14127 ustund 22444 relexpss1d 38968 |
Copyright terms: Public domain | W3C validator |