Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coss12d | Structured version Visualization version GIF version |
Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
coss12d.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
coss12d.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Ref | Expression |
---|---|
coss12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss12d.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | |
2 | 1 | ssbrd 5113 | . . . . 5 ⊢ (𝜑 → (𝑥𝐶𝑦 → 𝑥𝐷𝑦)) |
3 | coss12d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
4 | 3 | ssbrd 5113 | . . . . 5 ⊢ (𝜑 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) |
5 | 2, 4 | anim12d 608 | . . . 4 ⊢ (𝜑 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧))) |
6 | 5 | eximdv 1921 | . . 3 ⊢ (𝜑 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧))) |
7 | 6 | ssopab2dv 5457 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧)}) |
8 | df-co 5589 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
9 | df-co 5589 | . 2 ⊢ (𝐵 ∘ 𝐷) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧)} | |
10 | 7, 8, 9 | 3sstr4g 3962 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ⊆ wss 3883 class class class wbr 5070 {copab 5132 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: trrelssd 14612 ustund 23281 bj-imdirco 35288 relexpss1d 41202 |
Copyright terms: Public domain | W3C validator |