![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coss12d | Structured version Visualization version GIF version |
Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
coss12d.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
coss12d.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Ref | Expression |
---|---|
coss12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss12d.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | |
2 | 1 | ssbrd 5190 | . . . . 5 ⊢ (𝜑 → (𝑥𝐶𝑦 → 𝑥𝐷𝑦)) |
3 | coss12d.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
4 | 3 | ssbrd 5190 | . . . . 5 ⊢ (𝜑 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) |
5 | 2, 4 | anim12d 607 | . . . 4 ⊢ (𝜑 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧))) |
6 | 5 | eximdv 1918 | . . 3 ⊢ (𝜑 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧))) |
7 | 6 | ssopab2dv 5550 | . 2 ⊢ (𝜑 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧)}) |
8 | df-co 5684 | . 2 ⊢ (𝐴 ∘ 𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
9 | df-co 5684 | . 2 ⊢ (𝐵 ∘ 𝐷) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐷𝑦 ∧ 𝑦𝐵𝑧)} | |
10 | 7, 8, 9 | 3sstr4g 4026 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1779 ⊆ wss 3947 class class class wbr 5147 {copab 5209 ∘ ccom 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 df-ss 3964 df-br 5148 df-opab 5210 df-co 5684 |
This theorem is referenced by: trrelssd 14924 ustund 23946 bj-imdirco 36374 relexpss1d 42758 |
Copyright terms: Public domain | W3C validator |