Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin1 Structured version   Visualization version   GIF version

Theorem iunrelexpmin1 40854
Description: The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin1.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin1.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 769 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ)
3 simpr 488 . . . . . 6 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7186 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 4910 . . . 4 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
6 elex 3416 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 484 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑅 ∈ V)
8 nnex 11723 . . . . . 6 ℕ ∈ V
9 ovex 7204 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 7695 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 6784 . . 3 ((𝑅𝑉𝑁 = ℕ) → (𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
13 relexp1g 14476 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1413sseq1d 3909 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1514anbi1d 633 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
16 oveq2 7179 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1716sseq1d 3909 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
1817imbi2d 344 . . . . . . . . . . 11 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
19 oveq2 7179 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2019sseq1d 3909 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2120imbi2d 344 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
22 oveq2 7179 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322sseq1d 3909 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2423imbi2d 344 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
25 oveq2 7179 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2625sseq1d 3909 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
2726imbi2d 344 . . . . . . . . . . 11 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
28 simprl 771 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
29 simp1 1137 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
30 1nn 11728 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
32 simp2l 1200 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
33 relexpaddnn 14501 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3429, 31, 32, 33syl3anc 1372 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
35 simp2rr 1244 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
36 simp3 1139 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
37 simp2rl 1243 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
3835, 36, 37trrelssd 14423 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
3934, 38eqsstrrd 3917 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
40393exp 1120 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4140a2d 29 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4218, 21, 24, 27, 28, 41nnind 11735 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
4342com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) ⊆ 𝑠))
4443ralrimiv 3095 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
45 iunss 4932 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4644, 45sylibr 237 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4746ex 416 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4815, 47sylbird 263 . . . . 5 (𝑅𝑉 → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4948adantr 484 . . . 4 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
50 sseq1 3903 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
5150imbi2d 344 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → (((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)))
5249, 51syl5ibr 249 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
5312, 52mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
5453alrimiv 1933 1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wal 1540   = wceq 1542  wcel 2113  wral 3053  Vcvv 3398  wss 3844   ciun 4882  cmpt 5111  ccom 5530  cfv 6340  (class class class)co 7171  1c1 10617   + caddc 10619  cn 11717  𝑟crelexp 14469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-n0 11978  df-z 12064  df-uz 12326  df-seq 13462  df-relexp 14470
This theorem is referenced by:  dftrcl3  40866
  Copyright terms: Public domain W3C validator