Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin1 Structured version   Visualization version   GIF version

Theorem iunrelexpmin1 43683
Description: The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin1.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin1.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 768 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ)
3 simpr 484 . . . . . 6 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7428 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 5001 . . . 4 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
6 elex 3484 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑅 ∈ V)
8 nnex 12254 . . . . . 6 ℕ ∈ V
9 ovex 7446 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 7975 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 7004 . . 3 ((𝑅𝑉𝑁 = ℕ) → (𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
13 relexp1g 15047 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1413sseq1d 3995 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1514anbi1d 631 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
16 oveq2 7421 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1716sseq1d 3995 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
1817imbi2d 340 . . . . . . . . . . 11 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
19 oveq2 7421 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2019sseq1d 3995 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2120imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
22 oveq2 7421 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322sseq1d 3995 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2423imbi2d 340 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
25 oveq2 7421 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2625sseq1d 3995 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
2726imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
28 simprl 770 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
29 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
30 1nn 12259 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
32 simp2l 1199 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
33 relexpaddnn 15072 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3429, 31, 32, 33syl3anc 1372 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
35 simp2rr 1243 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
36 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
37 simp2rl 1242 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
3835, 36, 37trrelssd 14994 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
3934, 38eqsstrrd 3999 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
40393exp 1119 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4140a2d 29 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4218, 21, 24, 27, 28, 41nnind 12266 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
4342com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) ⊆ 𝑠))
4443ralrimiv 3132 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
45 iunss 5025 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4644, 45sylibr 234 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4746ex 412 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4815, 47sylbird 260 . . . . 5 (𝑅𝑉 → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4948adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
50 sseq1 3989 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
5150imbi2d 340 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → (((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)))
5249, 51imbitrrid 246 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
5312, 52mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
5453alrimiv 1926 1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1537   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  wss 3931   ciun 4971  cmpt 5205  ccom 5669  cfv 6541  (class class class)co 7413  1c1 11138   + caddc 11140  cn 12248  𝑟crelexp 15040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-seq 14025  df-relexp 15041
This theorem is referenced by:  dftrcl3  43695
  Copyright terms: Public domain W3C validator