Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin1 Structured version   Visualization version   GIF version

Theorem iunrelexpmin1 39918
 Description: The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin1.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin1.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 765 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ)
3 simpr 485 . . . . . 6 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7163 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 4944 . . . 4 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
6 elex 3518 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑅 ∈ V)
8 nnex 11633 . . . . . 6 ℕ ∈ V
9 ovex 7181 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 7660 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 6772 . . 3 ((𝑅𝑉𝑁 = ℕ) → (𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
13 relexp1g 14375 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1413sseq1d 4002 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1514anbi1d 629 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
16 oveq2 7156 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1716sseq1d 4002 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
1817imbi2d 342 . . . . . . . . . . 11 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
19 oveq2 7156 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2019sseq1d 4002 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2120imbi2d 342 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
22 oveq2 7156 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322sseq1d 4002 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2423imbi2d 342 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
25 oveq2 7156 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2625sseq1d 4002 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
2726imbi2d 342 . . . . . . . . . . 11 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
28 simprl 767 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
29 simp1 1130 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
30 1nn 11638 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
32 simp2l 1193 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
33 relexpaddnn 14400 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3429, 31, 32, 33syl3anc 1365 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
35 simp2rr 1237 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
36 simp3 1132 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
37 simp2rl 1236 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
3835, 36, 37trrelssd 14323 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
3934, 38eqsstrrd 4010 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
40393exp 1113 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4140a2d 29 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4218, 21, 24, 27, 28, 41nnind 11645 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
4342com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) ⊆ 𝑠))
4443ralrimiv 3186 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
45 iunss 4966 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4644, 45sylibr 235 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4746ex 413 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4815, 47sylbird 261 . . . . 5 (𝑅𝑉 → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4948adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
50 sseq1 3996 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
5150imbi2d 342 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → (((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)))
5249, 51syl5ibr 247 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
5312, 52mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
5453alrimiv 1921 1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081  ∀wal 1528   = wceq 1530   ∈ wcel 2107  ∀wral 3143  Vcvv 3500   ⊆ wss 3940  ∪ ciun 4917   ↦ cmpt 5143   ∘ ccom 5558  ‘cfv 6352  (class class class)co 7148  1c1 10527   + caddc 10529  ℕcn 11627  ↑𝑟crelexp 14369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-seq 13360  df-relexp 14370 This theorem is referenced by:  dftrcl3  39930
 Copyright terms: Public domain W3C validator