Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin1 Structured version   Visualization version   GIF version

Theorem iunrelexpmin1 43720
Description: The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin1.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin1.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 768 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ)
3 simpr 484 . . . . . 6 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7356 . . . . 5 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 4969 . . . 4 (((𝑅𝑉𝑁 = ℕ) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
6 elex 3455 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑅 ∈ V)
8 nnex 12123 . . . . . 6 ℕ ∈ V
9 ovex 7374 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 7895 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 6932 . . 3 ((𝑅𝑉𝑁 = ℕ) → (𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
13 relexp1g 14925 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1413sseq1d 3964 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1514anbi1d 631 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
16 oveq2 7349 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1716sseq1d 3964 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
1817imbi2d 340 . . . . . . . . . . 11 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
19 oveq2 7349 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2019sseq1d 3964 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2120imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
22 oveq2 7349 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322sseq1d 3964 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2423imbi2d 340 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
25 oveq2 7349 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2625sseq1d 3964 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
2726imbi2d 340 . . . . . . . . . . 11 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
28 simprl 770 . . . . . . . . . . 11 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
29 simp1 1136 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
30 1nn 12128 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
32 simp2l 1200 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
33 relexpaddnn 14950 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3429, 31, 32, 33syl3anc 1373 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
35 simp2rr 1244 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
36 simp3 1138 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
37 simp2rl 1243 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
3835, 36, 37trrelssd 14872 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
3934, 38eqsstrrd 3968 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
40393exp 1119 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4140a2d 29 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4218, 21, 24, 27, 28, 41nnind 12135 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
4342com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) ⊆ 𝑠))
4443ralrimiv 3121 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
45 iunss 4992 . . . . . . . 8 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4644, 45sylibr 234 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)
4746ex 412 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4815, 47sylbird 260 . . . . 5 (𝑅𝑉 → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
4948adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
50 sseq1 3958 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠))
5150imbi2d 340 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → (((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) ⊆ 𝑠)))
5249, 51imbitrrid 246 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
5312, 52mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ) → ((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
5453alrimiv 1928 1 ((𝑅𝑉𝑁 = ℕ) → ∀𝑠((𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  wss 3900   ciun 4939  cmpt 5170  ccom 5618  cfv 6477  (class class class)co 7341  1c1 10999   + caddc 11001  cn 12117  𝑟crelexp 14918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-seq 13901  df-relexp 14919
This theorem is referenced by:  dftrcl3  43732
  Copyright terms: Public domain W3C validator