Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif5TEMP Structured version   Visualization version   GIF version

Theorem undif5TEMP 36450
Description: An equality involving class union and class difference. (Temporary: as soon as this Mathbox only PR is accepted, I'll open a PR to place this to the main. PM) (Contributed by Thierry Arnoux, 26-Jun-2024.)
Assertion
Ref Expression
undif5TEMP ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)

Proof of Theorem undif5TEMP
StepHypRef Expression
1 difun2 4420 . 2 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
2 disjdif2 4419 . 2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
31, 2eqtrid 2788 1 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3889  cun 3890  cin 3891  c0 4262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-nul 4263
This theorem is referenced by:  sucdifsn2  36451
  Copyright terms: Public domain W3C validator