Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucdifsn2 Structured version   Visualization version   GIF version

Theorem sucdifsn2 38507
Description: Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
sucdifsn2 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴

Proof of Theorem sucdifsn2
StepHypRef Expression
1 disjcsn 9493 . 2 (𝐴 ∩ {𝐴}) = ∅
2 undif5 4432 . 2 ((𝐴 ∩ {𝐴}) = ∅ → ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴)
31, 2ax-mp 5 1 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3894  cun 3895  cin 3896  c0 4280  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-nul 4281  df-sn 4574
This theorem is referenced by:  sucdifsn  38508  partsuc2  38887
  Copyright terms: Public domain W3C validator