Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucdifsn2 Structured version   Visualization version   GIF version

Theorem sucdifsn2 38226
Description: Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
sucdifsn2 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴

Proof of Theorem sucdifsn2
StepHypRef Expression
1 disjcsn 9557 . 2 (𝐴 ∩ {𝐴}) = ∅
2 undif5 4448 . 2 ((𝐴 ∩ {𝐴}) = ∅ → ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴)
31, 2ax-mp 5 1 ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3911  cun 3912  cin 3913  c0 4296  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-pr 5387  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-nul 4297  df-sn 4590  df-pr 4592
This theorem is referenced by:  sucdifsn  38227  partsuc2  38771
  Copyright terms: Public domain W3C validator