| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucdifsn2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| sucdifsn2 | ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjcsn 9564 | . 2 ⊢ (𝐴 ∩ {𝐴}) = ∅ | |
| 2 | undif5 4451 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ → ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-pr 5390 ax-reg 9552 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-nul 4300 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: sucdifsn 38234 partsuc2 38778 |
| Copyright terms: Public domain | W3C validator |