![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucdifsn2 | Structured version Visualization version GIF version |
Description: Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
sucdifsn2 | ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjcsn 9629 | . 2 ⊢ (𝐴 ∩ {𝐴}) = ∅ | |
2 | undif5 4486 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ → ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ∅c0 4322 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-pr 5429 ax-reg 9617 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-nul 4323 df-sn 4631 df-pr 4633 |
This theorem is referenced by: sucdifsn 37840 partsuc2 38381 |
Copyright terms: Public domain | W3C validator |