Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjcsn | Structured version Visualization version GIF version |
Description: A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 32771 and does not depend on df-ne 2941. (Temporary: as soon as this Mathbox only PR is accepted, I'll open a PR to place this to the main. PM) (Contributed by BJ, 4-Apr-2019.) |
Ref | Expression |
---|---|
disjcsn | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9408 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | disjsn 4651 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ∅c0 4262 {csn 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-reg 9403 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-nul 4263 df-sn 4566 df-pr 4568 |
This theorem is referenced by: sucdifsn2 36451 ressucdifsn2 36457 |
Copyright terms: Public domain | W3C validator |