| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjcsn | Structured version Visualization version GIF version | ||
| Description: A class is disjoint from its singleton. A consequence of regularity. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 4-Apr-2019.) |
| Ref | Expression |
|---|---|
| disjcsn | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9485 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | disjsn 4661 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3900 df-in 3904 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: bnj927 34781 bnj535 34902 sucdifsn2 38496 ressucdifsn2 38498 |
| Copyright terms: Public domain | W3C validator |