![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjcsn | Structured version Visualization version GIF version |
Description: A class is disjoint from its singleton. A consequence of regularity. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 4-Apr-2019.) |
Ref | Expression |
---|---|
disjcsn | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9592 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | disjsn 4716 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 ∩ cin 3948 ∅c0 4323 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-pr 5428 ax-reg 9587 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-nul 4324 df-sn 4630 df-pr 4632 |
This theorem is referenced by: bnj927 33780 bnj535 33901 sucdifsn2 37104 ressucdifsn2 37110 |
Copyright terms: Public domain | W3C validator |