| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjcsn | Structured version Visualization version GIF version | ||
| Description: A class is disjoint from its singleton. A consequence of regularity. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 4-Apr-2019.) |
| Ref | Expression |
|---|---|
| disjcsn | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9616 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | disjsn 4692 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ∅c0 4313 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-nul 4314 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: bnj927 34805 bnj535 34926 sucdifsn2 38261 ressucdifsn2 38267 |
| Copyright terms: Public domain | W3C validator |