MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjcsn Structured version   Visualization version   GIF version

Theorem disjcsn 9627
Description: A class is disjoint from its singleton. A consequence of regularity. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 4-Apr-2019.)
Assertion
Ref Expression
disjcsn (𝐴 ∩ {𝐴}) = ∅

Proof of Theorem disjcsn
StepHypRef Expression
1 elirr 9620 . 2 ¬ 𝐴𝐴
2 disjsn 4716 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
31, 2mpbir 230 1 (𝐴 ∩ {𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  cin 3944  c0 4323  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-pr 5428  ax-reg 9615
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-nul 4324  df-sn 4630  df-pr 4632
This theorem is referenced by:  bnj927  34470  bnj535  34591  sucdifsn2  37778  ressucdifsn2  37784
  Copyright terms: Public domain W3C validator