MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjcsn Structured version   Visualization version   GIF version

Theorem disjcsn 9673
Description: A class is disjoint from its singleton. A consequence of regularity. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 4-Apr-2019.)
Assertion
Ref Expression
disjcsn (𝐴 ∩ {𝐴}) = ∅

Proof of Theorem disjcsn
StepHypRef Expression
1 elirr 9666 . 2 ¬ 𝐴𝐴
2 disjsn 4736 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
31, 2mpbir 231 1 (𝐴 ∩ {𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  cin 3975  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-nul 4353  df-sn 4649  df-pr 4651
This theorem is referenced by:  bnj927  34745  bnj535  34866  sucdifsn2  38193  ressucdifsn2  38199
  Copyright terms: Public domain W3C validator