| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 4238 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 4323 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 4112 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 4341 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 ∪ cun 3895 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-nul 4281 |
| This theorem is referenced by: undif5 4432 uneqdifeq 4440 difprsn1 4749 orddif 6404 domunsncan 8990 elfiun 9314 hartogslem1 9428 cantnfp1lem3 9570 dju1dif 10064 infdju1 10081 ssxr 11182 dfn2 12394 incexclem 15743 mreexmrid 17549 lbsextlem4 21098 ufprim 23824 volun 25473 i1f1 25618 itgioo 25744 itgsplitioo 25766 plyeq0lem 26142 jensen 26926 difeq 32498 fzdif2 32773 fzodif2 32774 pmtrcnel2 33059 measun 34224 carsgclctunlem1 34330 carsggect 34331 chtvalz 34642 elmrsubrn 35564 mrsubvrs 35566 pibt2 37461 finixpnum 37655 lindsadd 37663 lindsenlbs 37665 poimirlem2 37672 poimirlem4 37674 poimirlem6 37676 poimirlem7 37677 poimirlem8 37678 poimirlem11 37681 poimirlem12 37682 poimirlem13 37683 poimirlem14 37684 poimirlem16 37686 poimirlem18 37688 poimirlem19 37689 poimirlem21 37691 poimirlem23 37693 poimirlem27 37697 poimirlem30 37700 asindmre 37753 disjresundif 38291 kelac2 43168 pwfi2f1o 43199 iccdifioo 45625 iccdifprioo 45626 hoiprodp1 46696 |
| Copyright terms: Public domain | W3C validator |