| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 4250 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 4335 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 4124 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 4353 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 ∪ cun 3909 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-nul 4293 |
| This theorem is referenced by: undif5 4444 uneqdifeq 4452 difprsn1 4760 orddif 6418 domunsncan 9018 elfiun 9357 hartogslem1 9471 cantnfp1lem3 9609 dju1dif 10102 infdju1 10119 ssxr 11219 dfn2 12431 incexclem 15778 mreexmrid 17584 lbsextlem4 21103 ufprim 23829 volun 25479 i1f1 25624 itgioo 25750 itgsplitioo 25772 plyeq0lem 26148 jensen 26932 difeq 32497 fzdif2 32763 fzodif2 32764 pmtrcnel2 33062 measun 34194 carsgclctunlem1 34301 carsggect 34302 chtvalz 34613 elmrsubrn 35500 mrsubvrs 35502 pibt2 37398 finixpnum 37592 lindsadd 37600 lindsenlbs 37602 poimirlem2 37609 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem8 37615 poimirlem11 37618 poimirlem12 37619 poimirlem13 37620 poimirlem14 37621 poimirlem16 37623 poimirlem18 37625 poimirlem19 37626 poimirlem21 37628 poimirlem23 37630 poimirlem27 37634 poimirlem30 37637 asindmre 37690 disjresundif 38224 kelac2 43047 pwfi2f1o 43078 iccdifioo 45506 iccdifprioo 45507 hoiprodp1 46579 |
| Copyright terms: Public domain | W3C validator |