| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 4271 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 4356 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 4145 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 4374 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2763 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3928 ∪ cun 3929 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-nul 4314 |
| This theorem is referenced by: undif5 4465 uneqdifeq 4473 difprsn1 4781 orddif 6455 domunsncan 9091 elfiun 9447 hartogslem1 9561 cantnfp1lem3 9699 dju1dif 10192 infdju1 10209 ssxr 11309 dfn2 12519 incexclem 15857 mreexmrid 17660 lbsextlem4 21127 ufprim 23852 volun 25503 i1f1 25648 itgioo 25774 itgsplitioo 25796 plyeq0lem 26172 jensen 26956 difeq 32504 fzdif2 32772 fzodif2 32773 pmtrcnel2 33106 measun 34247 carsgclctunlem1 34354 carsggect 34355 chtvalz 34666 elmrsubrn 35547 mrsubvrs 35549 pibt2 37440 finixpnum 37634 lindsadd 37642 lindsenlbs 37644 poimirlem2 37651 poimirlem4 37653 poimirlem6 37655 poimirlem7 37656 poimirlem8 37657 poimirlem11 37660 poimirlem12 37661 poimirlem13 37662 poimirlem14 37663 poimirlem16 37665 poimirlem18 37667 poimirlem19 37668 poimirlem21 37670 poimirlem23 37672 poimirlem27 37676 poimirlem30 37679 asindmre 37732 disjresundif 38266 kelac2 43056 pwfi2f1o 43087 iccdifioo 45511 iccdifprioo 45512 hoiprodp1 46584 |
| Copyright terms: Public domain | W3C validator |