| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 4250 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 4335 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 4124 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 4353 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 ∪ cun 3909 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-nul 4293 |
| This theorem is referenced by: undif5 4444 uneqdifeq 4452 difprsn1 4760 orddif 6418 domunsncan 9018 elfiun 9357 hartogslem1 9471 cantnfp1lem3 9609 dju1dif 10102 infdju1 10119 ssxr 11219 dfn2 12431 incexclem 15778 mreexmrid 17580 lbsextlem4 21047 ufprim 23772 volun 25422 i1f1 25567 itgioo 25693 itgsplitioo 25715 plyeq0lem 26091 jensen 26875 difeq 32420 fzdif2 32686 fzodif2 32687 pmtrcnel2 33020 measun 34174 carsgclctunlem1 34281 carsggect 34282 chtvalz 34593 elmrsubrn 35480 mrsubvrs 35482 pibt2 37378 finixpnum 37572 lindsadd 37580 lindsenlbs 37582 poimirlem2 37589 poimirlem4 37591 poimirlem6 37593 poimirlem7 37594 poimirlem8 37595 poimirlem11 37598 poimirlem12 37599 poimirlem13 37600 poimirlem14 37601 poimirlem16 37603 poimirlem18 37605 poimirlem19 37606 poimirlem21 37608 poimirlem23 37610 poimirlem27 37614 poimirlem30 37617 asindmre 37670 disjresundif 38204 kelac2 43027 pwfi2f1o 43058 iccdifioo 45486 iccdifprioo 45487 hoiprodp1 46559 |
| Copyright terms: Public domain | W3C validator |