| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 4242 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 4327 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 4116 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 4345 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 ∪ cun 3901 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-nul 4285 |
| This theorem is referenced by: undif5 4436 uneqdifeq 4444 difprsn1 4751 orddif 6405 domunsncan 8994 elfiun 9320 hartogslem1 9434 cantnfp1lem3 9576 dju1dif 10067 infdju1 10084 ssxr 11185 dfn2 12397 incexclem 15743 mreexmrid 17549 lbsextlem4 21068 ufprim 23794 volun 25444 i1f1 25589 itgioo 25715 itgsplitioo 25737 plyeq0lem 26113 jensen 26897 difeq 32462 fzdif2 32733 fzodif2 32734 pmtrcnel2 33032 measun 34178 carsgclctunlem1 34285 carsggect 34286 chtvalz 34597 elmrsubrn 35497 mrsubvrs 35499 pibt2 37395 finixpnum 37589 lindsadd 37597 lindsenlbs 37599 poimirlem2 37606 poimirlem4 37608 poimirlem6 37610 poimirlem7 37611 poimirlem8 37612 poimirlem11 37615 poimirlem12 37616 poimirlem13 37617 poimirlem14 37618 poimirlem16 37620 poimirlem18 37622 poimirlem19 37623 poimirlem21 37625 poimirlem23 37627 poimirlem27 37631 poimirlem30 37634 asindmre 37687 disjresundif 38221 kelac2 43042 pwfi2f1o 43073 iccdifioo 45500 iccdifprioo 45501 hoiprodp1 46573 |
| Copyright terms: Public domain | W3C validator |