| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version | ||
| Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
| Ref | Expression |
|---|---|
| difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundir 4254 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
| 2 | difid 4339 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 3 | 2 | uneq2i 4128 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
| 4 | un0 4357 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtri 2756 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∪ cun 3912 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-nul 4297 |
| This theorem is referenced by: undif5 4448 uneqdifeq 4456 difprsn1 4764 orddif 6430 domunsncan 9041 elfiun 9381 hartogslem1 9495 cantnfp1lem3 9633 dju1dif 10126 infdju1 10143 ssxr 11243 dfn2 12455 incexclem 15802 mreexmrid 17604 lbsextlem4 21071 ufprim 23796 volun 25446 i1f1 25591 itgioo 25717 itgsplitioo 25739 plyeq0lem 26115 jensen 26899 difeq 32447 fzdif2 32713 fzodif2 32714 pmtrcnel2 33047 measun 34201 carsgclctunlem1 34308 carsggect 34309 chtvalz 34620 elmrsubrn 35507 mrsubvrs 35509 pibt2 37405 finixpnum 37599 lindsadd 37607 lindsenlbs 37609 poimirlem2 37616 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem8 37622 poimirlem11 37625 poimirlem12 37626 poimirlem13 37627 poimirlem14 37628 poimirlem16 37630 poimirlem18 37632 poimirlem19 37633 poimirlem21 37635 poimirlem23 37637 poimirlem27 37641 poimirlem30 37644 asindmre 37697 disjresundif 38231 kelac2 43054 pwfi2f1o 43085 iccdifioo 45513 iccdifprioo 45514 hoiprodp1 46586 |
| Copyright terms: Public domain | W3C validator |