![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version |
Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundir 4310 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
2 | difid 4398 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
3 | 2 | uneq2i 4188 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
4 | un0 4417 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∪ cun 3974 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-nul 4353 |
This theorem is referenced by: undif5 4508 uneqdifeq 4516 difprsn1 4825 orddif 6491 domunsncan 9138 elfiun 9499 hartogslem1 9611 cantnfp1lem3 9749 dju1dif 10242 infdju1 10259 ssxr 11359 dfn2 12566 incexclem 15884 mreexmrid 17701 lbsextlem4 21186 ufprim 23938 volun 25599 i1f1 25744 itgioo 25871 itgsplitioo 25893 plyeq0lem 26269 jensen 27050 difeq 32548 fzdif2 32796 fzodif2 32797 pmtrcnel2 33083 measun 34175 carsgclctunlem1 34282 carsggect 34283 chtvalz 34606 elmrsubrn 35488 mrsubvrs 35490 pibt2 37383 finixpnum 37565 lindsadd 37573 lindsenlbs 37575 poimirlem2 37582 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem8 37588 poimirlem11 37591 poimirlem12 37592 poimirlem13 37593 poimirlem14 37594 poimirlem16 37596 poimirlem18 37598 poimirlem19 37599 poimirlem21 37601 poimirlem23 37603 poimirlem27 37607 poimirlem30 37610 asindmre 37663 disjresundif 38198 kelac2 43022 pwfi2f1o 43053 iccdifioo 45433 iccdifprioo 45434 hoiprodp1 46509 |
Copyright terms: Public domain | W3C validator |