Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difun2 | Structured version Visualization version GIF version |
Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
difun2 | ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundir 4211 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) | |
2 | difid 4301 | . . 3 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
3 | 2 | uneq2i 4090 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) |
4 | un0 4321 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
5 | 1, 3, 4 | 3eqtri 2770 | 1 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∪ cun 3881 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 |
This theorem is referenced by: uneqdifeq 4420 difprsn1 4730 orddif 6344 domunsncan 8812 elfiun 9119 hartogslem1 9231 cantnfp1lem3 9368 dju1dif 9859 infdju1 9876 ssxr 10975 dfn2 12176 incexclem 15476 mreexmrid 17269 lbsextlem4 20338 ufprim 22968 volun 24614 i1f1 24759 itgioo 24885 itgsplitioo 24907 plyeq0lem 25276 jensen 26043 difeq 30766 undif5 30768 fzdif2 31014 fzodif2 31015 pmtrcnel2 31261 measun 32079 carsgclctunlem1 32184 carsggect 32185 chtvalz 32509 elmrsubrn 33382 mrsubvrs 33384 pibt2 35515 finixpnum 35689 lindsadd 35697 lindsenlbs 35699 poimirlem2 35706 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem8 35712 poimirlem11 35715 poimirlem12 35716 poimirlem13 35717 poimirlem14 35718 poimirlem16 35720 poimirlem18 35722 poimirlem19 35723 poimirlem21 35725 poimirlem23 35727 poimirlem27 35731 poimirlem30 35734 asindmre 35787 kelac2 40806 pwfi2f1o 40837 iccdifioo 42943 iccdifprioo 42944 hoiprodp1 44016 |
Copyright terms: Public domain | W3C validator |