| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdif2 | Structured version Visualization version GIF version | ||
| Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| disjdif2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 4067 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ ∅)) | |
| 2 | difin 4219 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 3 | dif0 4325 | . 2 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
| 4 | 1, 2, 3 | 3eqtr3g 2789 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∖ cdif 3894 ∩ cin 3896 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-nul 4281 |
| This theorem is referenced by: undif5 4432 opwo0id 5435 setsfun0 17083 cnfldfun 21305 cnfldfunOLD 21318 ptbasfi 23496 sltlpss 27853 slelss 27854 fzdif2 32773 fzodif2 32774 chtvalz 34642 bj-2upln1upl 37068 disjresdif 38290 dvrelog2 42167 dvrelog3 42168 readvrec2 42464 readvrec 42465 gneispace 44237 dvmptfprodlem 46052 |
| Copyright terms: Public domain | W3C validator |