Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjdif2 | Structured version Visualization version GIF version |
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
disjdif2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 4062 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ ∅)) | |
2 | difin 4207 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | dif0 4318 | . 2 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
4 | 1, 2, 3 | 3eqtr3g 2799 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3894 ∩ cin 3896 ∅c0 4268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-in 3904 df-nul 4269 |
This theorem is referenced by: undif5 4428 opwo0id 5435 setsfun0 16962 cnfldfun 20707 ptbasfi 22830 fzdif2 31340 fzodif2 31341 chtvalz 32850 sltlpss 34178 bj-2upln1upl 35303 disjresdif 36497 dvrelog2 40319 dvrelog3 40320 gneispace 42054 dvmptfprodlem 43810 |
Copyright terms: Public domain | W3C validator |