| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjdif2 | Structured version Visualization version GIF version | ||
| Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| disjdif2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 4071 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ ∅)) | |
| 2 | difin 4223 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 3 | dif0 4329 | . 2 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
| 4 | 1, 2, 3 | 3eqtr3g 2787 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3900 ∩ cin 3902 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-in 3910 df-nul 4285 |
| This theorem is referenced by: undif5 4436 opwo0id 5440 setsfun0 17083 cnfldfun 21275 cnfldfunOLD 21288 ptbasfi 23466 sltlpss 27822 slelss 27823 fzdif2 32733 fzodif2 32734 chtvalz 34597 bj-2upln1upl 37002 disjresdif 38220 dvrelog2 42041 dvrelog3 42042 readvrec2 42338 readvrec 42339 gneispace 44111 dvmptfprodlem 45929 |
| Copyright terms: Public domain | W3C validator |