MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjdif2 Structured version   Visualization version   GIF version

Theorem disjdif2 4486
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 4130 . 2 ((𝐴𝐵) = ∅ → (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ ∅))
2 difin 4278 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 dif0 4384 . 2 (𝐴 ∖ ∅) = 𝐴
41, 2, 33eqtr3g 2798 1 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cdif 3960  cin 3962  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-in 3970  df-nul 4340
This theorem is referenced by:  undif5  4491  opwo0id  5507  setsfun0  17206  cnfldfun  21396  cnfldfunOLD  21409  ptbasfi  23605  sltlpss  27960  slelss  27961  fzdif2  32799  fzodif2  32800  chtvalz  34623  bj-2upln1upl  37007  disjresdif  38223  dvrelog2  42046  dvrelog3  42047  readvrec2  42370  readvrec  42371  gneispace  44124  dvmptfprodlem  45900
  Copyright terms: Public domain W3C validator