MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjdif2 Structured version   Visualization version   GIF version

Theorem disjdif2 4503
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 4143 . 2 ((𝐴𝐵) = ∅ → (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ ∅))
2 difin 4291 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 dif0 4400 . 2 (𝐴 ∖ ∅) = 𝐴
41, 2, 33eqtr3g 2803 1 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cdif 3973  cin 3975  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-nul 4353
This theorem is referenced by:  undif5  4508  opwo0id  5516  setsfun0  17219  cnfldfun  21401  cnfldfunOLD  21414  ptbasfi  23610  sltlpss  27963  slelss  27964  fzdif2  32796  fzodif2  32797  chtvalz  34606  bj-2upln1upl  36990  disjresdif  38197  dvrelog2  42021  dvrelog3  42022  gneispace  44096  dvmptfprodlem  45865
  Copyright terms: Public domain W3C validator