![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjdif2 | Structured version Visualization version GIF version |
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
disjdif2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 4143 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ ∅)) | |
2 | difin 4291 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | dif0 4400 | . 2 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
4 | 1, 2, 3 | 3eqtr3g 2803 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 |
This theorem is referenced by: undif5 4508 opwo0id 5516 setsfun0 17219 cnfldfun 21401 cnfldfunOLD 21414 ptbasfi 23610 sltlpss 27963 slelss 27964 fzdif2 32796 fzodif2 32797 chtvalz 34606 bj-2upln1upl 36990 disjresdif 38197 dvrelog2 42021 dvrelog3 42022 gneispace 44096 dvmptfprodlem 45865 |
Copyright terms: Public domain | W3C validator |