![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjdif2 | Structured version Visualization version GIF version |
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
disjdif2 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 4130 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ ∅)) | |
2 | difin 4278 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | dif0 4384 | . 2 ⊢ (𝐴 ∖ ∅) = 𝐴 | |
4 | 1, 2, 3 | 3eqtr3g 2798 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3960 ∩ cin 3962 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-nul 4340 |
This theorem is referenced by: undif5 4491 opwo0id 5507 setsfun0 17206 cnfldfun 21396 cnfldfunOLD 21409 ptbasfi 23605 sltlpss 27960 slelss 27961 fzdif2 32799 fzodif2 32800 chtvalz 34623 bj-2upln1upl 37007 disjresdif 38223 dvrelog2 42046 dvrelog3 42047 readvrec2 42370 readvrec 42371 gneispace 44124 dvmptfprodlem 45900 |
Copyright terms: Public domain | W3C validator |