MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjdif2 Structured version   Visualization version   GIF version

Theorem disjdif2 4410
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 4047 . 2 ((𝐴𝐵) = ∅ → (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ ∅))
2 difin 4192 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 dif0 4303 . 2 (𝐴 ∖ ∅) = 𝐴
41, 2, 33eqtr3g 2802 1 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3880  cin 3882  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-nul 4254
This theorem is referenced by:  opwo0id  5405  setsfun0  16801  cnfldfunALT  20523  ptbasfi  22640  undif5  30768  fzdif2  31014  fzodif2  31015  chtvalz  32509  sltlpss  34014  bj-2upln1upl  35141  dvrelog2  40000  dvrelog3  40001  gneispace  41633  dvmptfprodlem  43375
  Copyright terms: Public domain W3C validator