MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjdif2 Structured version   Visualization version   GIF version

Theorem disjdif2 4427
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 4067 . 2 ((𝐴𝐵) = ∅ → (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ ∅))
2 difin 4219 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 dif0 4325 . 2 (𝐴 ∖ ∅) = 𝐴
41, 2, 33eqtr3g 2789 1 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3894  cin 3896  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-nul 4281
This theorem is referenced by:  undif5  4432  opwo0id  5435  setsfun0  17083  cnfldfun  21305  cnfldfunOLD  21318  ptbasfi  23496  sltlpss  27853  slelss  27854  fzdif2  32773  fzodif2  32774  chtvalz  34642  bj-2upln1upl  37068  disjresdif  38290  dvrelog2  42167  dvrelog3  42168  readvrec2  42464  readvrec  42465  gneispace  44237  dvmptfprodlem  46052
  Copyright terms: Public domain W3C validator