MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjdif2 Structured version   Visualization version   GIF version

Theorem disjdif2 4439
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 4079 . 2 ((𝐴𝐵) = ∅ → (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ ∅))
2 difin 4231 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 dif0 4337 . 2 (𝐴 ∖ ∅) = 𝐴
41, 2, 33eqtr3g 2787 1 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cdif 3908  cin 3910  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-nul 4293
This theorem is referenced by:  undif5  4444  opwo0id  5452  setsfun0  17118  cnfldfun  21310  cnfldfunOLD  21323  ptbasfi  23501  sltlpss  27857  slelss  27858  fzdif2  32763  fzodif2  32764  chtvalz  34613  bj-2upln1upl  37005  disjresdif  38223  dvrelog2  42045  dvrelog3  42046  readvrec2  42342  readvrec  42343  gneispace  44116  dvmptfprodlem  45935
  Copyright terms: Public domain W3C validator