MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifrOLD Structured version   Visualization version   GIF version

Theorem undifrOLD 4450
Description: Obsolete version of undifr 4449 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undifrOLD (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifrOLD
StepHypRef Expression
1 undif 4448 . 2 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2 uncom 4124 . . 3 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
32eqeq1i 2735 . 2 ((𝐴 ∪ (𝐵𝐴)) = 𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
41, 3bitri 275 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cdif 3914  cun 3915  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator