MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifrOLD Structured version   Visualization version   GIF version

Theorem undifrOLD 4484
Description: Obsolete version of undifr 4483 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undifrOLD (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifrOLD
StepHypRef Expression
1 undif 4482 . 2 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2 uncom 4158 . . 3 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
32eqeq1i 2742 . 2 ((𝐴 ∪ (𝐵𝐴)) = 𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
41, 3bitri 275 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cdif 3948  cun 3949  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator