MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifrOLD Structured version   Visualization version   GIF version

Theorem undifrOLD 4484
Description: Obsolete version of undifr 4483 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undifrOLD (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifrOLD
StepHypRef Expression
1 undif 4482 . 2 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2 uncom 4154 . . 3 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
32eqeq1i 2738 . 2 ((𝐴 ∪ (𝐵𝐴)) = 𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
41, 3bitri 275 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  cdif 3946  cun 3947  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator