MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifrOLD Structured version   Visualization version   GIF version

Theorem undifrOLD 4434
Description: Obsolete version of undifr 4433 as of 11-Mar-2025. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undifrOLD (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifrOLD
StepHypRef Expression
1 undif 4432 . 2 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2 uncom 4108 . . 3 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
32eqeq1i 2736 . 2 ((𝐴 ∪ (𝐵𝐴)) = 𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
41, 3bitri 275 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cdif 3899  cun 3900  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator