![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undifr | Structured version Visualization version GIF version |
Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
undifr | ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn2 4183 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | |
2 | undif1 4477 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2732 | . 2 ⊢ (((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 |
This theorem is referenced by: difsnid 4816 f1ofvswap 7319 ralxpmap 8919 psdmullem 22094 psdmul 22095 tocyc01 32857 aks6d1c5lem3 41612 selvvvval 41821 evlselvlem 41822 evlselv 41823 |
Copyright terms: Public domain | W3C validator |