| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undifr | Structured version Visualization version GIF version | ||
| Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.) |
| Ref | Expression |
|---|---|
| undifr | ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 4139 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | |
| 2 | undif1 4426 | . . 3 ⊢ ((𝐵 ∖ 𝐴) ∪ 𝐴) = (𝐵 ∪ 𝐴) | |
| 3 | 2 | eqeq1i 2736 | . 2 ⊢ (((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ((𝐵 ∖ 𝐴) ∪ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∖ cdif 3899 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: difsnid 4762 f1ofvswap 7240 ralxpmap 8820 psdmullem 22081 psdmul 22082 tocyc01 33085 rprmdvdsprod 33497 aks6d1c5lem3 42176 selvvvval 42624 evlselvlem 42625 evlselv 42626 isubgr3stgrlem3 48005 |
| Copyright terms: Public domain | W3C validator |