MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifr Structured version   Visualization version   GIF version

Theorem undifr 4482
Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.)
Assertion
Ref Expression
undifr (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifr
StepHypRef Expression
1 ssequn2 4183 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
2 undif1 4475 . . 3 ((𝐵𝐴) ∪ 𝐴) = (𝐵𝐴)
32eqeq1i 2736 . 2 (((𝐵𝐴) ∪ 𝐴) = 𝐵 ↔ (𝐵𝐴) = 𝐵)
41, 3bitr4i 278 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  cdif 3945  cun 3946  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  difsnid  4813  f1ofvswap  7307  ralxpmap  8896  tocyc01  32713  selvvvval  41620  evlselvlem  41621  evlselv  41622
  Copyright terms: Public domain W3C validator