Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undifr Structured version   Visualization version   GIF version

Theorem undifr 30872
Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.)
Assertion
Ref Expression
undifr (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifr
StepHypRef Expression
1 undif 4415 . 2 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2 uncom 4087 . . 3 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
32eqeq1i 2743 . 2 ((𝐴 ∪ (𝐵𝐴)) = 𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
41, 3bitri 274 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cdif 3884  cun 3885  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by:  tocyc01  31385
  Copyright terms: Public domain W3C validator