MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifr Structured version   Visualization version   GIF version

Theorem undifr 4446
Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.)
Assertion
Ref Expression
undifr (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifr
StepHypRef Expression
1 ssequn2 4152 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
2 undif1 4439 . . 3 ((𝐵𝐴) ∪ 𝐴) = (𝐵𝐴)
32eqeq1i 2734 . 2 (((𝐵𝐴) ∪ 𝐴) = 𝐵 ↔ (𝐵𝐴) = 𝐵)
41, 3bitr4i 278 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cdif 3911  cun 3912  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297
This theorem is referenced by:  difsnid  4774  f1ofvswap  7281  ralxpmap  8869  psdmullem  22052  psdmul  22053  tocyc01  33075  rprmdvdsprod  33505  aks6d1c5lem3  42125  selvvvval  42573  evlselvlem  42574  evlselv  42575  isubgr3stgrlem3  47967
  Copyright terms: Public domain W3C validator