MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifr Structured version   Visualization version   GIF version

Theorem undifr 4433
Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.)
Assertion
Ref Expression
undifr (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifr
StepHypRef Expression
1 ssequn2 4139 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
2 undif1 4426 . . 3 ((𝐵𝐴) ∪ 𝐴) = (𝐵𝐴)
32eqeq1i 2736 . 2 (((𝐵𝐴) ∪ 𝐴) = 𝐵 ↔ (𝐵𝐴) = 𝐵)
41, 3bitr4i 278 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cdif 3899  cun 3900  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284
This theorem is referenced by:  difsnid  4762  f1ofvswap  7240  ralxpmap  8820  psdmullem  22081  psdmul  22082  tocyc01  33085  rprmdvdsprod  33497  aks6d1c5lem3  42176  selvvvval  42624  evlselvlem  42625  evlselv  42626  isubgr3stgrlem3  48005
  Copyright terms: Public domain W3C validator