MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifr Structured version   Visualization version   GIF version

Theorem undifr 4484
Description: Union of complementary parts into whole. (Contributed by Thierry Arnoux, 21-Nov-2023.) (Proof shortened by SN, 11-Mar-2025.)
Assertion
Ref Expression
undifr (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)

Proof of Theorem undifr
StepHypRef Expression
1 ssequn2 4183 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
2 undif1 4477 . . 3 ((𝐵𝐴) ∪ 𝐴) = (𝐵𝐴)
32eqeq1i 2732 . 2 (((𝐵𝐴) ∪ 𝐴) = 𝐵 ↔ (𝐵𝐴) = 𝐵)
41, 3bitr4i 277 1 (𝐴𝐵 ↔ ((𝐵𝐴) ∪ 𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  cdif 3944  cun 3945  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325
This theorem is referenced by:  difsnid  4816  f1ofvswap  7319  ralxpmap  8919  psdmullem  22094  psdmul  22095  tocyc01  32857  aks6d1c5lem3  41612  selvvvval  41821  evlselvlem  41822  evlselv  41823
  Copyright terms: Public domain W3C validator