Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif5 Structured version   Visualization version   GIF version

Theorem undif5 30867
Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.)
Assertion
Ref Expression
undif5 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)

Proof of Theorem undif5
StepHypRef Expression
1 difun2 4414 . 2 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
2 disjdif2 4413 . 2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
31, 2eqtrid 2790 1 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3884  cun 3885  cin 3886  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257
This theorem is referenced by:  fressupp  31022
  Copyright terms: Public domain W3C validator