MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif5 Structured version   Visualization version   GIF version

Theorem undif5 4479
Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.)
Assertion
Ref Expression
undif5 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)

Proof of Theorem undif5
StepHypRef Expression
1 difun2 4475 . 2 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
2 disjdif2 4474 . 2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
31, 2eqtrid 2778 1 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  cdif 3943  cun 3944  cin 3945  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-nul 4323
This theorem is referenced by:  fressupp  32600  sucdifsn2  37948
  Copyright terms: Public domain W3C validator