MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif5 Structured version   Visualization version   GIF version

Theorem undif5 4483
Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.)
Assertion
Ref Expression
undif5 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)

Proof of Theorem undif5
StepHypRef Expression
1 difun2 4479 . 2 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
2 disjdif2 4478 . 2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
31, 2eqtrid 2782 1 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3944  cun 3945  cin 3946  c0 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-nul 4322
This theorem is referenced by:  fressupp  32177  sucdifsn2  37407
  Copyright terms: Public domain W3C validator