Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > undif5 | Structured version Visualization version GIF version |
Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.) |
Ref | Expression |
---|---|
undif5 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difun2 4411 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | |
2 | disjdif2 4410 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) | |
3 | 1, 2 | syl5eq 2791 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 |
This theorem is referenced by: fressupp 30924 |
Copyright terms: Public domain | W3C validator |