MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif5 Structured version   Visualization version   GIF version

Theorem undif5 4444
Description: An equality involving class union and class difference. (Contributed by Thierry Arnoux, 26-Jun-2024.)
Assertion
Ref Expression
undif5 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)

Proof of Theorem undif5
StepHypRef Expression
1 difun2 4440 . 2 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
2 disjdif2 4439 . 2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
31, 2eqtrid 2776 1 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cdif 3908  cun 3909  cin 3910  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-nul 4293
This theorem is referenced by:  cyclnumvtx  29703  fressupp  32584  elrgspnlem4  33169  sucdifsn2  38199
  Copyright terms: Public domain W3C validator