![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniel | Structured version Visualization version GIF version |
Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
uniel | ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clabel 2882 | . 2 ⊢ ({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
2 | dfuni2 4910 | . . 3 ⊢ ∪ 𝐴 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} | |
3 | 2 | eleq1i 2825 | . 2 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵) |
4 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∀wal 1540 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3071 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-uni 4909 |
This theorem is referenced by: unielss 41953 onsupmaxb 41974 |
Copyright terms: Public domain | W3C validator |