Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniel Structured version   Visualization version   GIF version

Theorem uniel 43222
Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
uniel ( 𝐴𝐵 ↔ ∃𝑥𝐵𝑧(𝑧𝑥 ↔ ∃𝑦𝐴 𝑧𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑧)

Proof of Theorem uniel
StepHypRef Expression
1 clabel 2888 . 2 ({𝑧 ∣ ∃𝑦𝐴 𝑧𝑦} ∈ 𝐵 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑧(𝑧𝑥 ↔ ∃𝑦𝐴 𝑧𝑦)))
2 dfuni2 4917 . . 3 𝐴 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝑦}
32eleq1i 2832 . 2 ( 𝐴𝐵 ↔ {𝑧 ∣ ∃𝑦𝐴 𝑧𝑦} ∈ 𝐵)
4 df-rex 3071 . 2 (∃𝑥𝐵𝑧(𝑧𝑥 ↔ ∃𝑦𝐴 𝑧𝑦) ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑧(𝑧𝑥 ↔ ∃𝑦𝐴 𝑧𝑦)))
51, 3, 43bitr4i 303 1 ( 𝐴𝐵 ↔ ∃𝑥𝐵𝑧(𝑧𝑥 ↔ ∃𝑦𝐴 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1537  wex 1778  wcel 2108  {cab 2714  wrex 3070   cuni 4915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-uni 4916
This theorem is referenced by:  unielss  43223  onsupmaxb  43244
  Copyright terms: Public domain W3C validator