| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniel | Structured version Visualization version GIF version | ||
| Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| uniel | ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clabel 2877 | . 2 ⊢ ({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
| 2 | dfuni2 4861 | . . 3 ⊢ ∪ 𝐴 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} | |
| 3 | 2 | eleq1i 2822 | . 2 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵) |
| 4 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-uni 4860 |
| This theorem is referenced by: unielss 43250 onsupmaxb 43271 |
| Copyright terms: Public domain | W3C validator |