| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniel | Structured version Visualization version GIF version | ||
| Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| uniel | ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clabel 2876 | . 2 ⊢ ({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
| 2 | dfuni2 4881 | . . 3 ⊢ ∪ 𝐴 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} | |
| 3 | 2 | eleq1i 2820 | . 2 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵) |
| 4 | df-rex 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
| 5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∃wrex 3055 ∪ cuni 4879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3056 df-uni 4880 |
| This theorem is referenced by: unielss 43179 onsupmaxb 43200 |
| Copyright terms: Public domain | W3C validator |