![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniel | Structured version Visualization version GIF version |
Description: Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
uniel | ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clabel 2888 | . 2 ⊢ ({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
2 | dfuni2 4917 | . . 3 ⊢ ∪ 𝐴 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} | |
3 | 2 | eleq1i 2832 | . 2 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦} ∈ 𝐵) |
4 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦))) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (∪ 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∈ wcel 2108 {cab 2714 ∃wrex 3070 ∪ cuni 4915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-uni 4916 |
This theorem is referenced by: unielss 43223 onsupmaxb 43244 |
Copyright terms: Public domain | W3C validator |