MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unv Structured version   Visualization version   GIF version

Theorem unv 4197
Description: The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
unv (𝐴 ∪ V) = V

Proof of Theorem unv
StepHypRef Expression
1 ssv 3851 . 2 (𝐴 ∪ V) ⊆ V
2 ssun2 4005 . 2 V ⊆ (𝐴 ∪ V)
31, 2eqssi 3844 1 (𝐴 ∪ V) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  Vcvv 3415  cun 3797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2804
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-v 3417  df-un 3804  df-in 3806  df-ss 3813
This theorem is referenced by:  oev2  7871
  Copyright terms: Public domain W3C validator