MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unv Structured version   Visualization version   GIF version

Theorem unv 4391
Description: The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
unv (𝐴 ∪ V) = V

Proof of Theorem unv
StepHypRef Expression
1 ssv 4002 . 2 (𝐴 ∪ V) ⊆ V
2 ssun2 4169 . 2 V ⊆ (𝐴 ∪ V)
31, 2eqssi 3994 1 (𝐴 ∪ V) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3469  cun 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-un 3949  df-in 3951  df-ss 3961
This theorem is referenced by:  oev2  8537
  Copyright terms: Public domain W3C validator