| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4184 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 3952 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 3954 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4187 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
| 5 | 1, 4 | eqssi 3946 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: undif1 4423 dfif4 4488 rint0 4936 iinrab2 5016 riin0 5028 xpriindi 5775 xpssres 5966 resdmdfsn 5979 elrid 5994 imainrect 6128 xpima 6129 cnvrescnv 6142 dmresv 6147 curry1 8034 curry2 8037 fpar 8046 oev2 8438 hashresfn 14247 dmhashres 14248 gsumxp 19888 pjpm 21645 ptbasfi 23496 mbfmcst 34272 0rrv 34464 fineqvomon 35134 vonf1owev 35152 pol0N 39956 |
| Copyright terms: Public domain | W3C validator |