| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 3972 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 3974 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4206 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
| 5 | 1, 4 | eqssi 3966 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: undif1 4442 dfif4 4507 rint0 4955 iinrab2 5037 riin0 5049 xpriindi 5803 xpssres 5992 resdmdfsn 6005 elrid 6020 imainrect 6157 xpima 6158 cnvrescnv 6171 dmresv 6176 curry1 8086 curry2 8089 fpar 8098 oev2 8490 hashresfn 14312 dmhashres 14313 gsumxp 19913 pjpm 21624 ptbasfi 23475 mbfmcst 34257 0rrv 34449 vonf1owev 35102 pol0N 39910 |
| Copyright terms: Public domain | W3C validator |