| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4188 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 3958 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 3960 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4191 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
| 5 | 1, 4 | eqssi 3952 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ss 3920 |
| This theorem is referenced by: undif1 4427 dfif4 4492 rint0 4938 iinrab2 5019 riin0 5031 xpriindi 5779 xpssres 5969 resdmdfsn 5982 elrid 5997 imainrect 6130 xpima 6131 cnvrescnv 6144 dmresv 6149 curry1 8037 curry2 8040 fpar 8049 oev2 8441 hashresfn 14247 dmhashres 14248 gsumxp 19855 pjpm 21615 ptbasfi 23466 mbfmcst 34227 0rrv 34419 vonf1owev 35081 pol0N 39888 |
| Copyright terms: Public domain | W3C validator |