Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4159 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
2 | ssid 3939 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | ssv 3941 | . . 3 ⊢ 𝐴 ⊆ V | |
4 | 2, 3 | ssini 4162 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
5 | 1, 4 | eqssi 3933 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: undif1 4406 dfif4 4471 rint0 4918 iinrab2 4995 riin0 5007 xpriindi 5734 xpssres 5917 resdmdfsn 5930 elrid 5942 imainrect 6073 xpima 6074 cnvrescnv 6087 dmresv 6092 curry1 7915 curry2 7918 fpar 7927 oev2 8315 hashresfn 13982 dmhashres 13983 gsumxp 19492 pjpm 20825 ptbasfi 22640 mbfmcst 32126 0rrv 32318 pol0N 37850 |
Copyright terms: Public domain | W3C validator |