Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4162 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
2 | ssid 3943 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | ssv 3945 | . . 3 ⊢ 𝐴 ⊆ V | |
4 | 2, 3 | ssini 4165 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
5 | 1, 4 | eqssi 3937 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: undif1 4409 dfif4 4474 rint0 4921 iinrab2 4999 riin0 5011 xpriindi 5745 xpssres 5928 resdmdfsn 5941 elrid 5953 imainrect 6084 xpima 6085 cnvrescnv 6098 dmresv 6103 curry1 7944 curry2 7947 fpar 7956 oev2 8353 hashresfn 14054 dmhashres 14055 gsumxp 19577 pjpm 20915 ptbasfi 22732 mbfmcst 32226 0rrv 32418 pol0N 37923 |
Copyright terms: Public domain | W3C validator |