| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4217 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 3986 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 3988 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4220 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
| 5 | 1, 4 | eqssi 3980 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-ss 3948 |
| This theorem is referenced by: undif1 4456 dfif4 4521 rint0 4969 iinrab2 5051 riin0 5063 xpriindi 5821 xpssres 6010 resdmdfsn 6023 elrid 6038 imainrect 6175 xpima 6176 cnvrescnv 6189 dmresv 6194 curry1 8108 curry2 8111 fpar 8120 oev2 8540 hashresfn 14363 dmhashres 14364 gsumxp 19962 pjpm 21673 ptbasfi 23524 mbfmcst 34296 0rrv 34488 pol0N 39933 |
| Copyright terms: Public domain | W3C validator |