| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4196 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 3966 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 3968 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4199 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
| 5 | 1, 4 | eqssi 3960 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: undif1 4435 dfif4 4500 rint0 4948 iinrab2 5029 riin0 5041 xpriindi 5790 xpssres 5978 resdmdfsn 5991 elrid 6006 imainrect 6142 xpima 6143 cnvrescnv 6156 dmresv 6161 curry1 8060 curry2 8063 fpar 8072 oev2 8464 hashresfn 14281 dmhashres 14282 gsumxp 19882 pjpm 21593 ptbasfi 23444 mbfmcst 34223 0rrv 34415 vonf1owev 35068 pol0N 39876 |
| Copyright terms: Public domain | W3C validator |