Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4164 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
2 | ssid 3944 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | ssv 3946 | . . 3 ⊢ 𝐴 ⊆ V | |
4 | 2, 3 | ssini 4167 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
5 | 1, 4 | eqssi 3938 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3427 ∩ cin 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3429 df-in 3895 df-ss 3905 |
This theorem is referenced by: undif1 4411 dfif4 4476 rint0 4923 iinrab2 5000 riin0 5012 xpriindi 5739 xpssres 5922 resdmdfsn 5935 elrid 5947 imainrect 6078 xpima 6079 cnvrescnv 6092 dmresv 6097 curry1 7920 curry2 7923 fpar 7932 oev2 8320 hashresfn 13998 dmhashres 13999 gsumxp 19521 pjpm 20859 ptbasfi 22676 mbfmcst 32168 0rrv 32360 pol0N 37892 |
Copyright terms: Public domain | W3C validator |