| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
| Ref | Expression |
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4200 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 3969 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 3971 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4203 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
| 5 | 1, 4 | eqssi 3963 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: undif1 4439 dfif4 4504 rint0 4952 iinrab2 5034 riin0 5046 xpriindi 5800 xpssres 5989 resdmdfsn 6002 elrid 6017 imainrect 6154 xpima 6155 cnvrescnv 6168 dmresv 6173 curry1 8083 curry2 8086 fpar 8095 oev2 8487 hashresfn 14305 dmhashres 14306 gsumxp 19906 pjpm 21617 ptbasfi 23468 mbfmcst 34250 0rrv 34442 vonf1owev 35095 pol0N 39903 |
| Copyright terms: Public domain | W3C validator |