MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inv1 Structured version   Visualization version   GIF version

Theorem inv1 4397
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
inv1 (𝐴 ∩ V) = 𝐴

Proof of Theorem inv1
StepHypRef Expression
1 inss1 4236 . 2 (𝐴 ∩ V) ⊆ 𝐴
2 ssid 4005 . . 3 𝐴𝐴
3 ssv 4007 . . 3 𝐴 ⊆ V
42, 3ssini 4239 . 2 𝐴 ⊆ (𝐴 ∩ V)
51, 4eqssi 3999 1 (𝐴 ∩ V) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3479  cin 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-in 3957  df-ss 3967
This theorem is referenced by:  undif1  4475  dfif4  4540  rint0  4987  iinrab2  5069  riin0  5081  xpriindi  5846  xpssres  6035  resdmdfsn  6048  elrid  6063  imainrect  6200  xpima  6201  cnvrescnv  6214  dmresv  6219  curry1  8130  curry2  8133  fpar  8142  oev2  8562  hashresfn  14380  dmhashres  14381  gsumxp  19995  pjpm  21729  ptbasfi  23590  mbfmcst  34262  0rrv  34454  pol0N  39912
  Copyright terms: Public domain W3C validator