![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4258 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
2 | ssid 4031 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | ssv 4033 | . . 3 ⊢ 𝐴 ⊆ V | |
4 | 2, 3 | ssini 4261 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
5 | 1, 4 | eqssi 4025 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: undif1 4499 dfif4 4563 rint0 5012 iinrab2 5093 riin0 5105 xpriindi 5861 xpssres 6047 resdmdfsn 6060 elrid 6075 imainrect 6212 xpima 6213 cnvrescnv 6226 dmresv 6231 curry1 8145 curry2 8148 fpar 8157 oev2 8579 hashresfn 14389 dmhashres 14390 gsumxp 20018 pjpm 21751 ptbasfi 23610 mbfmcst 34224 0rrv 34416 pol0N 39866 |
Copyright terms: Public domain | W3C validator |