|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version | ||
| Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) | 
| Ref | Expression | 
|---|---|
| inv1 | ⊢ (𝐴 ∩ V) = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inss1 4236 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
| 2 | ssid 4005 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | ssv 4007 | . . 3 ⊢ 𝐴 ⊆ V | |
| 4 | 2, 3 | ssini 4239 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) | 
| 5 | 1, 4 | eqssi 3999 | 1 ⊢ (𝐴 ∩ V) = 𝐴 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 Vcvv 3479 ∩ cin 3949 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-ss 3967 | 
| This theorem is referenced by: undif1 4475 dfif4 4540 rint0 4987 iinrab2 5069 riin0 5081 xpriindi 5846 xpssres 6035 resdmdfsn 6048 elrid 6063 imainrect 6200 xpima 6201 cnvrescnv 6214 dmresv 6219 curry1 8130 curry2 8133 fpar 8142 oev2 8562 hashresfn 14380 dmhashres 14381 gsumxp 19995 pjpm 21729 ptbasfi 23590 mbfmcst 34262 0rrv 34454 pol0N 39912 | 
| Copyright terms: Public domain | W3C validator |