![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inv1 | Structured version Visualization version GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4245 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
2 | ssid 4018 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | ssv 4020 | . . 3 ⊢ 𝐴 ⊆ V | |
4 | 2, 3 | ssini 4248 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
5 | 1, 4 | eqssi 4012 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3478 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 |
This theorem is referenced by: undif1 4482 dfif4 4546 rint0 4993 iinrab2 5075 riin0 5087 xpriindi 5850 xpssres 6038 resdmdfsn 6051 elrid 6066 imainrect 6203 xpima 6204 cnvrescnv 6217 dmresv 6222 curry1 8128 curry2 8131 fpar 8140 oev2 8560 hashresfn 14376 dmhashres 14377 gsumxp 20009 pjpm 21746 ptbasfi 23605 mbfmcst 34241 0rrv 34433 pol0N 39892 |
Copyright terms: Public domain | W3C validator |