| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
| Ref | Expression |
|---|---|
| eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss 3962 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: inv1 4361 unv 4362 intab 4942 intabs 5304 intidOLD 5418 dmv 5886 0ima 6049 cnvrescnv 6168 find 7871 dftpos4 8224 dfom3 9600 dmttrcl 9674 rnttrcl 9675 tc2 9695 tcidm 9699 tc0 9700 rankuni 9816 rankval4 9820 djuunxp 9874 djuun 9879 ackbij1 10190 cfom 10217 fin23lem16 10288 itunitc 10374 inaprc 10789 nqerf 10883 dmrecnq 10921 dmaddsr 11038 dmmulsr 11039 axaddf 11098 axmulf 11099 dfnn2 12199 dfuzi 12625 unirnioo 13410 uzrdgfni 13923 0bits 16409 4sqlem19 16934 ledm 18549 lern 18550 efgsfo 19669 0frgp 19709 indiscld 22978 leordtval2 23099 lecldbas 23106 llyidm 23375 nllyidm 23376 toplly 23377 lly1stc 23383 txuni2 23452 txindis 23521 ust0 24107 qdensere 24657 xrtgioo 24695 zdis 24705 xrhmeo 24844 bndth 24857 ismbf3d 25555 dvef 25884 reeff1o 26357 efifo 26456 dvloglem 26557 logf1o2 26559 bday1s 27743 onsiso 28169 dfn0s2 28224 bdayn0sf1o 28259 dfnns2 28261 choc1 31256 shsidmi 31313 shsval2i 31316 omlsii 31332 chdmm1i 31406 chj1i 31418 chm0i 31419 shjshsi 31421 span0 31471 spanuni 31473 sshhococi 31475 spansni 31486 pjoml4i 31516 pjrni 31631 shatomistici 32290 sumdmdlem2 32348 rinvf1o 32554 sigapildsys 34152 sxbrsigalem0 34262 dya2iocucvr 34275 sxbrsigalem4 34278 sxbrsiga 34281 ballotth 34529 kur14lem6 35198 mrsubrn 35500 msubrn 35516 filnetlem3 36368 filnetlem4 36369 onint1 36437 oninhaus 36438 bj-rabtr 36918 bj-rabtrAUTO 36920 bj-disj2r 37016 bj-nuliotaALT 37046 bj-idres 37148 icoreunrn 37347 comptiunov2i 43695 unisnALT 44915 fsumiunss 45573 fourierdlem62 46166 fouriersw 46229 salexct 46332 salgencntex 46341 |
| Copyright terms: Public domain | W3C validator |