![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
Ref | Expression |
---|---|
eqssi | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | eqss 4011 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: inv1 4404 unv 4405 intab 4983 intabs 5355 intidOLD 5469 dmv 5936 0ima 6098 cnvrescnv 6217 find 7918 dftpos4 8269 wfrlem16OLD 8363 dfom3 9685 dmttrcl 9759 rnttrcl 9760 tc2 9780 tcidm 9784 tc0 9785 rankuni 9901 rankval4 9905 djuunxp 9959 djuun 9964 ackbij1 10275 cfom 10302 fin23lem16 10373 itunitc 10459 inaprc 10874 nqerf 10968 dmrecnq 11006 dmaddsr 11123 dmmulsr 11124 axaddf 11183 axmulf 11184 dfnn2 12277 dfuzi 12707 unirnioo 13486 uzrdgfni 13996 0bits 16473 4sqlem19 16997 ledm 18648 lern 18649 efgsfo 19772 0frgp 19812 indiscld 23115 leordtval2 23236 lecldbas 23243 llyidm 23512 nllyidm 23513 toplly 23514 lly1stc 23520 txuni2 23589 txindis 23658 ust0 24244 qdensere 24806 xrtgioo 24842 zdis 24852 xrhmeo 24991 bndth 25004 ismbf3d 25703 dvef 26033 reeff1o 26506 efifo 26604 dvloglem 26705 logf1o2 26707 bday1s 27891 dfn0s2 28351 dfnns2 28377 choc1 31356 shsidmi 31413 shsval2i 31416 omlsii 31432 chdmm1i 31506 chj1i 31518 chm0i 31519 shjshsi 31521 span0 31571 spanuni 31573 sshhococi 31575 spansni 31586 pjoml4i 31616 pjrni 31731 shatomistici 32390 sumdmdlem2 32448 rinvf1o 32647 sigapildsys 34143 sxbrsigalem0 34253 dya2iocucvr 34266 sxbrsigalem4 34269 sxbrsiga 34272 ballotth 34519 kur14lem6 35196 mrsubrn 35498 msubrn 35514 filnetlem3 36363 filnetlem4 36364 onint1 36432 oninhaus 36433 bj-rabtr 36913 bj-rabtrAUTO 36915 bj-disj2r 37011 bj-nuliotaALT 37041 bj-idres 37143 icoreunrn 37342 comptiunov2i 43696 unisnALT 44924 fsumiunss 45531 fourierdlem62 46124 fouriersw 46187 salexct 46290 salgencntex 46299 |
Copyright terms: Public domain | W3C validator |