| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
| Ref | Expression |
|---|---|
| eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss 3945 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: inv1 4345 unv 4346 intab 4926 intabs 5285 dmv 5861 0ima 6026 cnvrescnv 6142 find 7825 dftpos4 8175 dfom3 9537 dmttrcl 9611 rnttrcl 9612 tc2 9630 tcidm 9634 tc0 9635 rankuni 9756 rankval4 9760 djuunxp 9814 djuun 9819 ackbij1 10128 cfom 10155 fin23lem16 10226 itunitc 10312 inaprc 10727 nqerf 10821 dmrecnq 10859 dmaddsr 10976 dmmulsr 10977 axaddf 11036 axmulf 11037 dfnn2 12138 dfuzi 12564 unirnioo 13349 uzrdgfni 13865 0bits 16350 4sqlem19 16875 ledm 18496 lern 18497 efgsfo 19651 0frgp 19691 indiscld 23006 leordtval2 23127 lecldbas 23134 llyidm 23403 nllyidm 23404 toplly 23405 lly1stc 23411 txuni2 23480 txindis 23549 ust0 24135 qdensere 24684 xrtgioo 24722 zdis 24732 xrhmeo 24871 bndth 24884 ismbf3d 25582 dvef 25911 reeff1o 26384 efifo 26483 dvloglem 26584 logf1o2 26586 bday1s 27775 onsiso 28205 dfn0s2 28260 bdayn0sf1o 28295 dfnns2 28297 choc1 31307 shsidmi 31364 shsval2i 31367 omlsii 31383 chdmm1i 31457 chj1i 31469 chm0i 31470 shjshsi 31472 span0 31522 spanuni 31524 sshhococi 31526 spansni 31537 pjoml4i 31567 pjrni 31682 shatomistici 32341 sumdmdlem2 32399 rinvf1o 32612 sigapildsys 34175 sxbrsigalem0 34284 dya2iocucvr 34297 sxbrsigalem4 34300 sxbrsiga 34303 ballotth 34551 kur14lem6 35255 mrsubrn 35557 msubrn 35573 filnetlem3 36424 filnetlem4 36425 onint1 36493 oninhaus 36494 bj-rabtr 36974 bj-rabtrAUTO 36976 bj-disj2r 37072 bj-nuliotaALT 37102 bj-idres 37204 icoreunrn 37403 dmsucmap 38491 comptiunov2i 43809 unisnALT 45028 fsumiunss 45685 fourierdlem62 46276 fouriersw 46339 salexct 46442 salgencntex 46451 |
| Copyright terms: Public domain | W3C validator |