| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
| Ref | Expression |
|---|---|
| eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss 3979 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 |
| This theorem is referenced by: inv1 4378 unv 4379 intab 4959 intabs 5324 intidOLD 5438 dmv 5907 0ima 6070 cnvrescnv 6189 find 7896 dftpos4 8249 wfrlem16OLD 8343 dfom3 9666 dmttrcl 9740 rnttrcl 9741 tc2 9761 tcidm 9765 tc0 9766 rankuni 9882 rankval4 9886 djuunxp 9940 djuun 9945 ackbij1 10256 cfom 10283 fin23lem16 10354 itunitc 10440 inaprc 10855 nqerf 10949 dmrecnq 10987 dmaddsr 11104 dmmulsr 11105 axaddf 11164 axmulf 11165 dfnn2 12258 dfuzi 12689 unirnioo 13471 uzrdgfni 13981 0bits 16463 4sqlem19 16988 ledm 18605 lern 18606 efgsfo 19725 0frgp 19765 indiscld 23034 leordtval2 23155 lecldbas 23162 llyidm 23431 nllyidm 23432 toplly 23433 lly1stc 23439 txuni2 23508 txindis 23577 ust0 24163 qdensere 24713 xrtgioo 24751 zdis 24761 xrhmeo 24900 bndth 24913 ismbf3d 25612 dvef 25941 reeff1o 26414 efifo 26513 dvloglem 26614 logf1o2 26616 bday1s 27800 onsiso 28226 dfn0s2 28281 bdayn0sf1o 28316 dfnns2 28318 choc1 31313 shsidmi 31370 shsval2i 31373 omlsii 31389 chdmm1i 31463 chj1i 31475 chm0i 31476 shjshsi 31478 span0 31528 spanuni 31530 sshhococi 31532 spansni 31543 pjoml4i 31573 pjrni 31688 shatomistici 32347 sumdmdlem2 32405 rinvf1o 32613 sigapildsys 34198 sxbrsigalem0 34308 dya2iocucvr 34321 sxbrsigalem4 34324 sxbrsiga 34327 ballotth 34575 kur14lem6 35238 mrsubrn 35540 msubrn 35556 filnetlem3 36403 filnetlem4 36404 onint1 36472 oninhaus 36473 bj-rabtr 36953 bj-rabtrAUTO 36955 bj-disj2r 37051 bj-nuliotaALT 37081 bj-idres 37183 icoreunrn 37382 comptiunov2i 43705 unisnALT 44925 fsumiunss 45584 fourierdlem62 46177 fouriersw 46240 salexct 46343 salgencntex 46352 |
| Copyright terms: Public domain | W3C validator |