Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
Ref | Expression |
---|---|
eqssi | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | eqss 3932 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: inv1 4325 unv 4326 intab 4906 intabs 5261 intid 5367 dmv 5820 0ima 5975 cnvrescnv 6087 find 7717 findOLD 7718 dftpos4 8032 wfrlem16OLD 8126 dfom3 9335 tc2 9431 tcidm 9435 tc0 9436 rankuni 9552 rankval4 9556 djuunxp 9610 djuun 9615 ackbij1 9925 cfom 9951 fin23lem16 10022 itunitc 10108 inaprc 10523 nqerf 10617 dmrecnq 10655 dmaddsr 10772 dmmulsr 10773 axaddf 10832 axmulf 10833 dfnn2 11916 dfuzi 12341 unirnioo 13110 uzrdgfni 13606 0bits 16074 4sqlem19 16592 ledm 18223 lern 18224 efgsfo 19260 0frgp 19300 indiscld 22150 leordtval2 22271 lecldbas 22278 llyidm 22547 nllyidm 22548 toplly 22549 lly1stc 22555 txuni2 22624 txindis 22693 ust0 23279 qdensere 23839 xrtgioo 23875 zdis 23885 xrhmeo 24015 bndth 24027 ismbf3d 24723 dvef 25049 reeff1o 25511 efifo 25608 dvloglem 25708 logf1o2 25710 choc1 29590 shsidmi 29647 shsval2i 29650 omlsii 29666 chdmm1i 29740 chj1i 29752 chm0i 29753 shjshsi 29755 span0 29805 spanuni 29807 sshhococi 29809 spansni 29820 pjoml4i 29850 pjrni 29965 shatomistici 30624 sumdmdlem2 30682 rinvf1o 30866 sigapildsys 32030 sxbrsigalem0 32138 dya2iocucvr 32151 sxbrsigalem4 32154 sxbrsiga 32157 ballotth 32404 kur14lem6 33073 mrsubrn 33375 msubrn 33391 dmttrcl 33707 rnttrcl 33708 bday1s 33952 filnetlem3 34496 filnetlem4 34497 onint1 34565 oninhaus 34566 bj-rabtr 35045 bj-rabtrAUTO 35047 bj-disj2r 35145 bj-nuliotaALT 35156 bj-idres 35258 icoreunrn 35457 comptiunov2i 41203 unisnALT 42435 fsumiunss 43006 fourierdlem62 43599 fouriersw 43662 salexct 43763 salgencntex 43772 |
Copyright terms: Public domain | W3C validator |