| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
| Ref | Expression |
|---|---|
| eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ss 3967 |
| This theorem is referenced by: inv1 4397 unv 4398 intab 4977 intabs 5348 intidOLD 5462 dmv 5932 0ima 6095 cnvrescnv 6214 find 7918 dftpos4 8271 wfrlem16OLD 8365 dfom3 9688 dmttrcl 9762 rnttrcl 9763 tc2 9783 tcidm 9787 tc0 9788 rankuni 9904 rankval4 9908 djuunxp 9962 djuun 9967 ackbij1 10278 cfom 10305 fin23lem16 10376 itunitc 10462 inaprc 10877 nqerf 10971 dmrecnq 11009 dmaddsr 11126 dmmulsr 11127 axaddf 11186 axmulf 11187 dfnn2 12280 dfuzi 12711 unirnioo 13490 uzrdgfni 14000 0bits 16477 4sqlem19 17002 ledm 18636 lern 18637 efgsfo 19758 0frgp 19798 indiscld 23100 leordtval2 23221 lecldbas 23228 llyidm 23497 nllyidm 23498 toplly 23499 lly1stc 23505 txuni2 23574 txindis 23643 ust0 24229 qdensere 24791 xrtgioo 24829 zdis 24839 xrhmeo 24978 bndth 24991 ismbf3d 25690 dvef 26019 reeff1o 26492 efifo 26590 dvloglem 26691 logf1o2 26693 bday1s 27877 dfn0s2 28337 dfnns2 28363 choc1 31347 shsidmi 31404 shsval2i 31407 omlsii 31423 chdmm1i 31497 chj1i 31509 chm0i 31510 shjshsi 31512 span0 31562 spanuni 31564 sshhococi 31566 spansni 31577 pjoml4i 31607 pjrni 31722 shatomistici 32381 sumdmdlem2 32439 rinvf1o 32641 sigapildsys 34164 sxbrsigalem0 34274 dya2iocucvr 34287 sxbrsigalem4 34290 sxbrsiga 34293 ballotth 34541 kur14lem6 35217 mrsubrn 35519 msubrn 35535 filnetlem3 36382 filnetlem4 36383 onint1 36451 oninhaus 36452 bj-rabtr 36932 bj-rabtrAUTO 36934 bj-disj2r 37030 bj-nuliotaALT 37060 bj-idres 37162 icoreunrn 37361 comptiunov2i 43724 unisnALT 44951 fsumiunss 45595 fourierdlem62 46188 fouriersw 46251 salexct 46354 salgencntex 46363 |
| Copyright terms: Public domain | W3C validator |