![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
Ref | Expression |
---|---|
eqssi | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | eqss 4024 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: inv1 4421 unv 4422 intab 5002 intabs 5367 intidOLD 5478 dmv 5947 0ima 6107 cnvrescnv 6226 find 7935 dftpos4 8286 wfrlem16OLD 8380 dfom3 9716 dmttrcl 9790 rnttrcl 9791 tc2 9811 tcidm 9815 tc0 9816 rankuni 9932 rankval4 9936 djuunxp 9990 djuun 9995 ackbij1 10306 cfom 10333 fin23lem16 10404 itunitc 10490 inaprc 10905 nqerf 10999 dmrecnq 11037 dmaddsr 11154 dmmulsr 11155 axaddf 11214 axmulf 11215 dfnn2 12306 dfuzi 12734 unirnioo 13509 uzrdgfni 14009 0bits 16485 4sqlem19 17010 ledm 18660 lern 18661 efgsfo 19781 0frgp 19821 indiscld 23120 leordtval2 23241 lecldbas 23248 llyidm 23517 nllyidm 23518 toplly 23519 lly1stc 23525 txuni2 23594 txindis 23663 ust0 24249 qdensere 24811 xrtgioo 24847 zdis 24857 xrhmeo 24996 bndth 25009 ismbf3d 25708 dvef 26038 reeff1o 26509 efifo 26607 dvloglem 26708 logf1o2 26710 bday1s 27894 dfn0s2 28354 dfnns2 28380 choc1 31359 shsidmi 31416 shsval2i 31419 omlsii 31435 chdmm1i 31509 chj1i 31521 chm0i 31522 shjshsi 31524 span0 31574 spanuni 31576 sshhococi 31578 spansni 31589 pjoml4i 31619 pjrni 31734 shatomistici 32393 sumdmdlem2 32451 rinvf1o 32649 sigapildsys 34126 sxbrsigalem0 34236 dya2iocucvr 34249 sxbrsigalem4 34252 sxbrsiga 34255 ballotth 34502 kur14lem6 35179 mrsubrn 35481 msubrn 35497 filnetlem3 36346 filnetlem4 36347 onint1 36415 oninhaus 36416 bj-rabtr 36896 bj-rabtrAUTO 36898 bj-disj2r 36994 bj-nuliotaALT 37024 bj-idres 37126 icoreunrn 37325 comptiunov2i 43668 unisnALT 44897 fsumiunss 45496 fourierdlem62 46089 fouriersw 46152 salexct 46255 salgencntex 46264 |
Copyright terms: Public domain | W3C validator |