| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
| Ref | Expression |
|---|---|
| eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss 3951 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: inv1 4349 unv 4350 intab 4928 intabs 5288 intidOLD 5401 dmv 5865 0ima 6029 cnvrescnv 6144 find 7828 dftpos4 8178 dfom3 9543 dmttrcl 9617 rnttrcl 9618 tc2 9638 tcidm 9642 tc0 9643 rankuni 9759 rankval4 9763 djuunxp 9817 djuun 9822 ackbij1 10131 cfom 10158 fin23lem16 10229 itunitc 10315 inaprc 10730 nqerf 10824 dmrecnq 10862 dmaddsr 10979 dmmulsr 10980 axaddf 11039 axmulf 11040 dfnn2 12141 dfuzi 12567 unirnioo 13352 uzrdgfni 13865 0bits 16350 4sqlem19 16875 ledm 18496 lern 18497 efgsfo 19618 0frgp 19658 indiscld 22976 leordtval2 23097 lecldbas 23104 llyidm 23373 nllyidm 23374 toplly 23375 lly1stc 23381 txuni2 23450 txindis 23519 ust0 24105 qdensere 24655 xrtgioo 24693 zdis 24703 xrhmeo 24842 bndth 24855 ismbf3d 25553 dvef 25882 reeff1o 26355 efifo 26454 dvloglem 26555 logf1o2 26557 bday1s 27745 onsiso 28174 dfn0s2 28229 bdayn0sf1o 28264 dfnns2 28266 choc1 31271 shsidmi 31328 shsval2i 31331 omlsii 31347 chdmm1i 31421 chj1i 31433 chm0i 31434 shjshsi 31436 span0 31486 spanuni 31488 sshhococi 31490 spansni 31501 pjoml4i 31531 pjrni 31646 shatomistici 32305 sumdmdlem2 32363 rinvf1o 32574 sigapildsys 34135 sxbrsigalem0 34245 dya2iocucvr 34258 sxbrsigalem4 34261 sxbrsiga 34264 ballotth 34512 kur14lem6 35194 mrsubrn 35496 msubrn 35512 filnetlem3 36364 filnetlem4 36365 onint1 36433 oninhaus 36434 bj-rabtr 36914 bj-rabtrAUTO 36916 bj-disj2r 37012 bj-nuliotaALT 37042 bj-idres 37144 icoreunrn 37343 comptiunov2i 43689 unisnALT 44909 fsumiunss 45566 fourierdlem62 46159 fouriersw 46222 salexct 46325 salgencntex 46334 |
| Copyright terms: Public domain | W3C validator |