| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqssi | Structured version Visualization version GIF version | ||
| Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
| Ref | Expression |
|---|---|
| eqssi | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: inv1 4357 unv 4358 intab 4938 intabs 5299 intidOLD 5413 dmv 5876 0ima 6038 cnvrescnv 6156 find 7851 dftpos4 8201 dfom3 9576 dmttrcl 9650 rnttrcl 9651 tc2 9671 tcidm 9675 tc0 9676 rankuni 9792 rankval4 9796 djuunxp 9850 djuun 9855 ackbij1 10166 cfom 10193 fin23lem16 10264 itunitc 10350 inaprc 10765 nqerf 10859 dmrecnq 10897 dmaddsr 11014 dmmulsr 11015 axaddf 11074 axmulf 11075 dfnn2 12175 dfuzi 12601 unirnioo 13386 uzrdgfni 13899 0bits 16385 4sqlem19 16910 ledm 18531 lern 18532 efgsfo 19653 0frgp 19693 indiscld 23011 leordtval2 23132 lecldbas 23139 llyidm 23408 nllyidm 23409 toplly 23410 lly1stc 23416 txuni2 23485 txindis 23554 ust0 24140 qdensere 24690 xrtgioo 24728 zdis 24738 xrhmeo 24877 bndth 24890 ismbf3d 25588 dvef 25917 reeff1o 26390 efifo 26489 dvloglem 26590 logf1o2 26592 bday1s 27780 onsiso 28209 dfn0s2 28264 bdayn0sf1o 28299 dfnns2 28301 choc1 31306 shsidmi 31363 shsval2i 31366 omlsii 31382 chdmm1i 31456 chj1i 31468 chm0i 31469 shjshsi 31471 span0 31521 spanuni 31523 sshhococi 31525 spansni 31536 pjoml4i 31566 pjrni 31681 shatomistici 32340 sumdmdlem2 32398 rinvf1o 32604 sigapildsys 34145 sxbrsigalem0 34255 dya2iocucvr 34268 sxbrsigalem4 34271 sxbrsiga 34274 ballotth 34522 kur14lem6 35191 mrsubrn 35493 msubrn 35509 filnetlem3 36361 filnetlem4 36362 onint1 36430 oninhaus 36431 bj-rabtr 36911 bj-rabtrAUTO 36913 bj-disj2r 37009 bj-nuliotaALT 37039 bj-idres 37141 icoreunrn 37340 comptiunov2i 43688 unisnALT 44908 fsumiunss 45566 fourierdlem62 46159 fouriersw 46222 salexct 46325 salgencntex 46334 |
| Copyright terms: Public domain | W3C validator |