| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4318 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3967 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-dif 3934 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: ss0b 4381 0pss 4427 npss0 4428 ssdifeq0 4467 pwpw0 4794 sssn 4807 sspr 4816 sstp 4817 uni0 4916 int0el 4960 0disj 5117 disjx0 5119 tr0 5247 al0ssb 5283 0elpw 5331 rel0 5783 0ima 6070 dmxpss 6165 dmsnopss 6208 dfpo2 6290 on0eqel 6483 iotassuni 6508 iotassuniOLD 6515 fun0 6606 f0 6764 fvmptss 7003 fvmptss2 7017 funressn 7154 riotassuni 7407 ordsuci 7807 frxp 8130 suppssdm 8181 suppun 8188 suppss 8198 suppssov1 8201 suppssov2 8202 suppss2 8204 suppssfv 8206 oaword1 8569 oaword2 8570 omwordri 8589 oewordri 8609 oeworde 8610 nnaword1 8646 naddword1 8708 mapssfset 8870 0domgOLD 9120 fodomr 9147 pwdom 9148 php 9226 phpOLD 9236 isinf 9273 isinfOLD 9274 fodomfir 9345 finsschain 9376 fipwuni 9443 fipwss 9446 wdompwdom 9597 inf3lemd 9646 inf3lem1 9647 cantnfle 9690 ttrclselem1 9744 tc0 9766 r1val1 9805 alephgeom 10101 infmap2 10236 cfub 10268 cf0 10270 cflecard 10272 cfle 10273 fin23lem16 10354 itunitc1 10439 ttukeylem6 10533 ttukeylem7 10534 canthwe 10670 wun0 10737 tsk0 10782 gruina 10837 grur1a 10838 uzssz 12878 xrsup0 13344 fzoss1 13708 fsuppmapnn0fiubex 14015 swrd00 14667 swrdlend 14676 repswswrd 14807 xptrrel 15004 relexpdmd 15068 relexprnd 15072 relexpfldd 15074 rtrclreclem4 15085 sum0 15742 fsumss 15746 fsumcvg3 15750 prod0 15964 0bits 16463 sadid1 16492 sadid2 16493 smu01lem 16509 smu01 16510 smu02 16511 lcmf0 16658 vdwmc2 17004 vdwlem13 17018 ramz2 17049 strfvss 17211 ressbasssg 17263 ressbasssOLD 17266 ress0 17269 ismred2 17620 acsfn 17676 acsfn0 17677 0ssc 17855 fullfunc 17926 fthfunc 17927 mrelatglb0 18576 cntzssv 19316 symgsssg 19453 efgsfo 19725 dprdsn 20024 lsp0 20971 lss0v 20979 lspsnat 21111 lsppratlem3 21115 lbsexg 21130 evpmss 21551 ocv0 21642 ocvz 21643 css1 21655 resspsrbas 21939 mhp0cl 22089 psr1crng 22127 psr1assa 22128 psr1tos 22129 psr1bas2 22130 vr1cl2 22133 ply1lss 22137 ply1subrg 22138 psr1plusg 22161 psr1vsca 22162 psr1mulr 22163 psr1ring 22187 psr1lmod 22189 psr1sca 22190 0opn 22847 toponsspwpw 22865 basdif0 22896 baspartn 22897 0cld 22981 ntr0 23024 cmpfi 23351 refun0 23458 xkouni 23542 xkoccn 23562 alexsubALTlem2 23991 ptcmplem2 23996 tsmsfbas 24071 setsmstopn 24422 restmetu 24514 tngtopn 24594 iccntr 24766 xrge0gsumle 24778 xrge0tsms 24779 metdstri 24796 ovol0 25451 0mbl 25497 itg1le 25671 itgioo 25774 limcnlp 25836 dvbsss 25860 plyssc 26162 fsumharmonic 26979 nulsslt 27766 nulssgt 27767 bday0b 27799 madess 27845 oldssmade 27846 precsexlem8 28173 egrsubgr 29261 0grsubgr 29262 0uhgrsubgr 29263 chocnul 31314 span0 31528 chsup0 31534 ssnnssfz 32769 xrge0tsmsd 33061 elrgspnlem4 33245 unitprodclb 33409 constrfiss 33790 ddemeas 34272 dya2iocuni 34320 oms0 34334 0elcarsg 34344 eulerpartlemt 34408 bnj1143 34826 mrsubrn 35540 msubrn 35556 mthmpps 35609 bj-nuliotaALT 37081 bj-restsn0 37108 bj-restsn10 37109 bj-imdirco 37213 pibt2 37440 mblfinlem2 37687 mblfinlem3 37688 ismblfin 37690 sstotbnd2 37803 isbnd3 37813 ssbnd 37817 heiborlem6 37845 lub0N 39212 glb0N 39216 0psubN 39773 padd01 39835 padd02 39836 pol0N 39933 pcl0N 39946 0psubclN 39967 mzpcompact2lem 42749 itgocn 43163 oaabsb 43293 oege1 43305 nnoeomeqom 43311 cantnfresb 43323 omabs2 43331 omcl2 43332 tfsconcatb0 43343 nadd2rabex 43385 fpwfvss 43411 nla0002 43423 nla0003 43424 nla0001 43425 fvnonrel 43596 clcnvlem 43622 cnvrcl0 43624 cnvtrcl0 43625 0he 43781 ntrclskb 44068 gru0eld 44228 mnu0eld 44264 mnuprdlem4 44274 mnuprd 44275 founiiun0 45194 uzfissfz 45333 limcdm0 45627 cncfiooicc 45903 itgvol0 45977 ibliooicc 45980 ovn0 46575 sprssspr 47475 isubgr0uhgr 47866 ssnn0ssfz 48304 ipolub0 48946 ipoglb0 48948 discsubc 49011 iinfconstbas 49013 nelsubclem 49014 setc1onsubc 49459 setrec2fun 49536 setrec2mpt 49541 |
| Copyright terms: Public domain | W3C validator |