Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4270 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3930 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ⊆ wss 3892 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 |
This theorem is referenced by: ss0b 4337 0pss 4384 npss0 4385 ssdifeq0 4423 pwpw0 4752 sssn 4765 sspr 4772 sstp 4773 pwsnOLD 4838 uni0 4875 int0el 4916 0disj 5071 disjx0 5073 tr0 5207 al0ssb 5236 0elpw 5282 rel0 5708 0ima 5985 dmxpss 6073 dmsnopss 6116 dfpo2 6198 on0eqel 6383 iotassuni 6411 fun0 6497 f0 6653 fvmptss 6884 fvmptss2 6897 funressn 7028 riotassuni 7270 frxp 7959 suppssdm 7985 suppun 7992 suppss 8002 suppssOLD 8003 suppssov1 8006 suppss2 8008 suppssfv 8010 oaword1 8375 oaword2 8376 omwordri 8395 oewordri 8415 oeworde 8416 nnaword1 8452 mapssfset 8631 0domgOLD 8879 fodomr 8906 pwdom 8907 php 8983 phpOLD 8995 isinf 9024 finsschain 9114 fipwuni 9173 fipwss 9176 wdompwdom 9325 inf3lemd 9373 inf3lem1 9374 cantnfle 9417 ttrclselem1 9471 trpredlem1 9484 tc0 9515 r1val1 9555 alephgeom 9849 infmap2 9985 cfub 10016 cf0 10018 cflecard 10020 cfle 10021 fin23lem16 10102 itunitc1 10187 ttukeylem6 10281 ttukeylem7 10282 canthwe 10418 wun0 10485 tsk0 10530 gruina 10585 grur1a 10586 uzssz 12614 xrsup0 13068 fzoss1 13425 fsuppmapnn0fiubex 13723 swrd00 14368 swrdlend 14377 repswswrd 14508 xptrrel 14702 relexpdmd 14766 relexprnd 14770 relexpfldd 14772 rtrclreclem4 14783 sum0 15444 fsumss 15448 fsumcvg3 15452 prod0 15664 0bits 16157 sadid1 16186 sadid2 16187 smu01lem 16203 smu01 16204 smu02 16205 lcmf0 16350 vdwmc2 16691 vdwlem13 16705 ramz2 16736 strfvss 16899 ressbasss 16961 ress0 16964 ismred2 17323 acsfn 17379 acsfn0 17380 0ssc 17563 fullfunc 17633 fthfunc 17634 mrelatglb0 18290 cntzssv 18945 symgsssg 19086 efgsfo 19356 dprdsn 19650 lsp0 20282 lss0v 20289 lspsnat 20418 lsppratlem3 20422 lbsexg 20437 evpmss 20802 ocv0 20893 ocvz 20894 css1 20906 resspsrbas 21195 mhp0cl 21347 psr1crng 21369 psr1assa 21370 psr1tos 21371 psr1bas2 21372 vr1cl2 21375 ply1lss 21378 ply1subrg 21379 psr1plusg 21404 psr1vsca 21405 psr1mulr 21406 psr1ring 21429 psr1lmod 21431 psr1sca 21432 0opn 22064 toponsspwpw 22082 basdif0 22114 baspartn 22115 0cld 22200 ntr0 22243 cmpfi 22570 refun0 22677 xkouni 22761 xkoccn 22781 alexsubALTlem2 23210 ptcmplem2 23215 tsmsfbas 23290 setsmstopn 23644 restmetu 23737 tngtopn 23825 iccntr 23995 xrge0gsumle 24007 xrge0tsms 24008 metdstri 24025 ovol0 24668 0mbl 24714 itg1le 24889 itgioo 24991 limcnlp 25053 dvbsss 25077 plyssc 25372 fsumharmonic 26172 egrsubgr 27655 0grsubgr 27656 0uhgrsubgr 27657 chocnul 29699 span0 29913 chsup0 29919 ssnnssfz 31117 xrge0tsmsd 31326 ddemeas 32213 dya2iocuni 32259 oms0 32273 0elcarsg 32283 eulerpartlemt 32347 bnj1143 32779 mrsubrn 33484 msubrn 33500 mthmpps 33553 nulsslt 34000 nulssgt 34001 bday0b 34033 madess 34068 oldssmade 34069 bj-nuliotaALT 35238 bj-restsn0 35265 bj-restsn10 35266 bj-imdirco 35370 pibt2 35597 mblfinlem2 35824 mblfinlem3 35825 ismblfin 35827 sstotbnd2 35941 isbnd3 35951 ssbnd 35955 heiborlem6 35983 lub0N 37212 glb0N 37216 0psubN 37772 padd01 37834 padd02 37835 pol0N 37932 pcl0N 37945 0psubclN 37966 sn-iotassuni 40205 mzpcompact2lem 40582 itgocn 40998 fvnonrel 41187 clcnvlem 41213 cnvrcl0 41215 cnvtrcl0 41216 0he 41372 ntrclskb 41661 gru0eld 41829 mnu0eld 41865 mnuprdlem4 41875 mnuprd 41876 founiiun0 42710 uzfissfz 42847 limcdm0 43141 cncfiooicc 43417 itgvol0 43491 ibliooicc 43494 ovn0 44086 sprssspr 44912 ssnn0ssfz 45664 ipolub0 46257 ipoglb0 46259 setrec2fun 46377 |
Copyright terms: Public domain | W3C validator |