Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3921 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: ss0b 4328 0pss 4375 npss0 4376 ssdifeq0 4414 pwpw0 4743 sssn 4756 sspr 4763 sstp 4764 pwsnOLD 4829 uni0 4866 int0el 4907 0disj 5062 disjx0 5064 tr0 5198 al0ssb 5227 0elpw 5273 rel0 5698 0ima 5975 dmxpss 6063 dmsnopss 6106 dfpo2 6188 on0eqel 6369 iotassuni 6397 fun0 6483 f0 6639 fvmptss 6869 fvmptss2 6882 funressn 7013 riotassuni 7253 frxp 7938 suppssdm 7964 suppun 7971 suppss 7981 suppssOLD 7982 suppssov1 7985 suppss2 7987 suppssfv 7989 oaword1 8345 oaword2 8346 omwordri 8365 oewordri 8385 oeworde 8386 nnaword1 8422 mapssfset 8597 0domg 8840 fodomr 8864 pwdom 8865 php 8897 isinf 8965 finsschain 9056 fipwuni 9115 fipwss 9118 wdompwdom 9267 inf3lemd 9315 inf3lem1 9316 cantnfle 9359 trpredlem1 9405 tc0 9436 r1val1 9475 alephgeom 9769 infmap2 9905 cfub 9936 cf0 9938 cflecard 9940 cfle 9941 fin23lem16 10022 itunitc1 10107 ttukeylem6 10201 ttukeylem7 10202 canthwe 10338 wun0 10405 tsk0 10450 gruina 10505 grur1a 10506 uzssz 12532 xrsup0 12986 fzoss1 13342 fsuppmapnn0fiubex 13640 swrd00 14285 swrdlend 14294 repswswrd 14425 xptrrel 14619 relexpdmd 14683 relexprnd 14687 relexpfldd 14689 rtrclreclem4 14700 sum0 15361 fsumss 15365 fsumcvg3 15369 prod0 15581 0bits 16074 sadid1 16103 sadid2 16104 smu01lem 16120 smu01 16121 smu02 16122 lcmf0 16267 vdwmc2 16608 vdwlem13 16622 ramz2 16653 strfvss 16816 ressbasss 16876 ress0 16879 ismred2 17229 acsfn 17285 acsfn0 17286 0ssc 17468 fullfunc 17538 fthfunc 17539 mrelatglb0 18194 cntzssv 18849 symgsssg 18990 efgsfo 19260 dprdsn 19554 lsp0 20186 lss0v 20193 lspsnat 20322 lsppratlem3 20326 lbsexg 20341 evpmss 20703 ocv0 20794 ocvz 20795 css1 20807 resspsrbas 21094 mhp0cl 21246 psr1crng 21268 psr1assa 21269 psr1tos 21270 psr1bas2 21271 vr1cl2 21274 ply1lss 21277 ply1subrg 21278 psr1plusg 21303 psr1vsca 21304 psr1mulr 21305 psr1ring 21328 psr1lmod 21330 psr1sca 21331 0opn 21961 toponsspwpw 21979 basdif0 22011 baspartn 22012 0cld 22097 ntr0 22140 cmpfi 22467 refun0 22574 xkouni 22658 xkoccn 22678 alexsubALTlem2 23107 ptcmplem2 23112 tsmsfbas 23187 setsmstopn 23539 restmetu 23632 tngtopn 23720 iccntr 23890 xrge0gsumle 23902 xrge0tsms 23903 metdstri 23920 ovol0 24562 0mbl 24608 itg1le 24783 itgioo 24885 limcnlp 24947 dvbsss 24971 plyssc 25266 fsumharmonic 26066 egrsubgr 27547 0grsubgr 27548 0uhgrsubgr 27549 chocnul 29591 span0 29805 chsup0 29811 ssnnssfz 31010 xrge0tsmsd 31219 ddemeas 32104 dya2iocuni 32150 oms0 32164 0elcarsg 32174 eulerpartlemt 32238 bnj1143 32670 mrsubrn 33375 msubrn 33391 mthmpps 33444 ttrclselem1 33711 nulsslt 33918 nulssgt 33919 bday0b 33951 madess 33986 oldssmade 33987 bj-nuliotaALT 35156 bj-restsn0 35183 bj-restsn10 35184 bj-imdirco 35288 pibt2 35515 mblfinlem2 35742 mblfinlem3 35743 ismblfin 35745 sstotbnd2 35859 isbnd3 35869 ssbnd 35873 heiborlem6 35901 lub0N 37130 glb0N 37134 0psubN 37690 padd01 37752 padd02 37753 pol0N 37850 pcl0N 37863 0psubclN 37884 sn-iotassuni 40122 mzpcompact2lem 40489 itgocn 40905 fvnonrel 41094 clcnvlem 41120 cnvrcl0 41122 cnvtrcl0 41123 0he 41279 ntrclskb 41568 gru0eld 41736 mnu0eld 41772 mnuprdlem4 41782 mnuprd 41783 founiiun0 42617 uzfissfz 42755 limcdm0 43049 cncfiooicc 43325 itgvol0 43399 ibliooicc 43402 ovn0 43994 sprssspr 44821 ssnn0ssfz 45573 ipolub0 46166 ipoglb0 46168 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |