| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4288 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3938 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3905 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: ss0b 4351 0pss 4397 npss0 4398 ssdifeq0 4437 pwpw0 4765 sssn 4778 sspr 4787 sstp 4788 uni0 4887 int0el 4929 0disj 5084 disjx0 5086 tr0 5210 al0ssb 5246 0elpw 5294 rel0 5739 0ima 6027 dmxpss 6118 dmsnopss 6161 dfpo2 6243 on0eqel 6431 iotassuni 6456 fun0 6546 f0 6704 fvmptss 6941 fvmptss2 6955 funressn 7092 riotassuni 7343 ordsuci 7741 frxp 8056 suppssdm 8107 suppun 8114 suppss 8124 suppssov1 8127 suppssov2 8128 suppss2 8130 suppssfv 8132 oaword1 8467 oaword2 8468 omwordri 8487 oewordri 8507 oeworde 8508 nnaword1 8544 naddword1 8606 mapssfset 8775 fodomr 9041 pwdom 9042 php 9116 isinf 9149 fodomfir 9212 finsschain 9243 fipwuni 9310 fipwss 9313 wdompwdom 9464 inf3lemd 9517 inf3lem1 9518 cantnfle 9561 ttrclselem1 9615 tc0 9635 r1val1 9679 alephgeom 9973 infmap2 10108 cfub 10140 cf0 10142 cflecard 10144 cfle 10145 fin23lem16 10226 itunitc1 10311 ttukeylem6 10405 ttukeylem7 10406 canthwe 10542 wun0 10609 tsk0 10654 gruina 10709 grur1a 10710 uzssz 12753 xrsup0 13222 fzoss1 13586 fsuppmapnn0fiubex 13899 swrd00 14552 swrdlend 14561 repswswrd 14691 xptrrel 14887 relexpdmd 14951 relexprnd 14955 relexpfldd 14957 rtrclreclem4 14968 sum0 15628 fsumss 15632 fsumcvg3 15636 prod0 15850 0bits 16350 sadid1 16379 sadid2 16380 smu01lem 16396 smu01 16397 smu02 16398 lcmf0 16545 vdwmc2 16891 vdwlem13 16905 ramz2 16936 strfvss 17098 ressbasssg 17148 ressbasssOLD 17151 ress0 17154 ismred2 17505 acsfn 17565 acsfn0 17566 0ssc 17744 fullfunc 17815 fthfunc 17816 mrelatglb0 18467 cntzssv 19241 symgsssg 19380 efgsfo 19652 dprdsn 19951 lsp0 20943 lss0v 20951 lspsnat 21083 lsppratlem3 21087 lbsexg 21102 evpmss 21524 ocv0 21615 ocvz 21616 css1 21628 resspsrbas 21912 mhp0cl 22062 psr1crng 22100 psr1assa 22101 psr1tos 22102 psr1bas2 22103 vr1cl2 22106 ply1lss 22110 ply1subrg 22111 psr1plusg 22134 psr1vsca 22135 psr1mulr 22136 psr1ring 22160 psr1lmod 22162 psr1sca 22163 0opn 22820 toponsspwpw 22838 basdif0 22869 baspartn 22870 0cld 22954 ntr0 22997 cmpfi 23324 refun0 23431 xkouni 23515 xkoccn 23535 alexsubALTlem2 23964 ptcmplem2 23969 tsmsfbas 24044 setsmstopn 24394 restmetu 24486 tngtopn 24566 iccntr 24738 xrge0gsumle 24750 xrge0tsms 24751 metdstri 24768 ovol0 25422 0mbl 25468 itg1le 25642 itgioo 25745 limcnlp 25807 dvbsss 25831 plyssc 26133 fsumharmonic 26950 nulsslt 27739 nulssgt 27740 bday0b 27775 madess 27822 oldssmade 27823 oldss 27824 precsexlem8 28153 egrsubgr 29256 0grsubgr 29257 0uhgrsubgr 29258 chocnul 31306 span0 31520 chsup0 31526 ssnnssfz 32768 xrge0tsmsd 33040 elrgspnlem4 33210 unitprodclb 33352 constrfiss 33762 ddemeas 34247 dya2iocuni 34294 oms0 34308 0elcarsg 34318 eulerpartlemt 34382 bnj1143 34800 mrsubrn 35555 msubrn 35571 mthmpps 35624 bj-nuliotaALT 37098 bj-restsn0 37125 bj-restsn10 37126 bj-imdirco 37230 pibt2 37457 mblfinlem2 37704 mblfinlem3 37705 ismblfin 37707 sstotbnd2 37820 isbnd3 37830 ssbnd 37834 heiborlem6 37862 lub0N 39234 glb0N 39238 0psubN 39794 padd01 39856 padd02 39857 pol0N 39954 pcl0N 39967 0psubclN 39988 mzpcompact2lem 42790 itgocn 43203 oaabsb 43333 oege1 43345 nnoeomeqom 43351 cantnfresb 43363 omabs2 43371 omcl2 43372 tfsconcatb0 43383 nadd2rabex 43425 fpwfvss 43451 nla0002 43463 nla0003 43464 nla0001 43465 fvnonrel 43636 clcnvlem 43662 cnvrcl0 43664 cnvtrcl0 43665 0he 43821 ntrclskb 44108 gru0eld 44268 mnu0eld 44304 mnuprdlem4 44314 mnuprd 44315 founiiun0 45233 uzfissfz 45371 limcdm0 45664 cncfiooicc 45938 itgvol0 46012 ibliooicc 46015 ovn0 46610 sprssspr 47518 isubgr0uhgr 47910 ssnn0ssfz 48386 ipolub0 49029 ipoglb0 49031 discsubc 49102 iinfconstbas 49104 nelsubclem 49105 setc1onsubc 49640 setrec2fun 49730 setrec2mpt 49735 |
| Copyright terms: Public domain | W3C validator |