| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4320 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3969 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ⊆ wss 3933 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-dif 3936 df-ss 3950 df-nul 4316 |
| This theorem is referenced by: ss0b 4383 0pss 4429 npss0 4430 ssdifeq0 4469 pwpw0 4795 sssn 4808 sspr 4817 sstp 4818 uni0 4917 int0el 4961 0disj 5118 disjx0 5120 tr0 5254 al0ssb 5290 0elpw 5338 rel0 5791 0ima 6078 dmxpss 6173 dmsnopss 6216 dfpo2 6298 on0eqel 6489 iotassuni 6514 iotassuniOLD 6521 fun0 6612 f0 6770 fvmptss 7009 fvmptss2 7023 funressn 7160 riotassuni 7411 ordsuci 7811 frxp 8134 suppssdm 8185 suppun 8192 suppss 8202 suppssov1 8205 suppssov2 8206 suppss2 8208 suppssfv 8210 oaword1 8573 oaword2 8574 omwordri 8593 oewordri 8613 oeworde 8614 nnaword1 8650 naddword1 8712 mapssfset 8874 0domgOLD 9124 fodomr 9151 pwdom 9152 php 9230 phpOLD 9242 isinf 9279 isinfOLD 9280 fodomfir 9351 finsschain 9382 fipwuni 9449 fipwss 9452 wdompwdom 9601 inf3lemd 9650 inf3lem1 9651 cantnfle 9694 ttrclselem1 9748 tc0 9770 r1val1 9809 alephgeom 10105 infmap2 10240 cfub 10272 cf0 10274 cflecard 10276 cfle 10277 fin23lem16 10358 itunitc1 10443 ttukeylem6 10537 ttukeylem7 10538 canthwe 10674 wun0 10741 tsk0 10786 gruina 10841 grur1a 10842 uzssz 12882 xrsup0 13348 fzoss1 13709 fsuppmapnn0fiubex 14016 swrd00 14665 swrdlend 14674 repswswrd 14805 xptrrel 15002 relexpdmd 15066 relexprnd 15070 relexpfldd 15072 rtrclreclem4 15083 sum0 15740 fsumss 15744 fsumcvg3 15748 prod0 15962 0bits 16459 sadid1 16488 sadid2 16489 smu01lem 16505 smu01 16506 smu02 16507 lcmf0 16654 vdwmc2 17000 vdwlem13 17014 ramz2 17045 strfvss 17207 ressbasssg 17264 ressbasssOLD 17267 ress0 17270 ismred2 17622 acsfn 17678 acsfn0 17679 0ssc 17858 fullfunc 17929 fthfunc 17930 mrelatglb0 18580 cntzssv 19320 symgsssg 19458 efgsfo 19730 dprdsn 20029 lsp0 20980 lss0v 20988 lspsnat 21120 lsppratlem3 21124 lbsexg 21139 evpmss 21571 ocv0 21662 ocvz 21663 css1 21675 resspsrbas 21961 mhp0cl 22117 psr1crng 22155 psr1assa 22156 psr1tos 22157 psr1bas2 22158 vr1cl2 22161 ply1lss 22165 ply1subrg 22166 psr1plusg 22189 psr1vsca 22190 psr1mulr 22191 psr1ring 22215 psr1lmod 22217 psr1sca 22218 0opn 22877 toponsspwpw 22895 basdif0 22926 baspartn 22927 0cld 23011 ntr0 23054 cmpfi 23381 refun0 23488 xkouni 23572 xkoccn 23592 alexsubALTlem2 24021 ptcmplem2 24026 tsmsfbas 24101 setsmstopn 24454 restmetu 24546 tngtopn 24626 iccntr 24798 xrge0gsumle 24810 xrge0tsms 24811 metdstri 24828 ovol0 25483 0mbl 25529 itg1le 25703 itgioo 25806 limcnlp 25868 dvbsss 25892 plyssc 26194 fsumharmonic 27010 nulsslt 27797 nulssgt 27798 bday0b 27830 madess 27870 oldssmade 27871 precsexlem8 28193 pw2bday 28373 egrsubgr 29241 0grsubgr 29242 0uhgrsubgr 29243 chocnul 31294 span0 31508 chsup0 31514 ssnnssfz 32736 xrge0tsmsd 33011 elrgspnlem4 33195 unitprodclb 33358 ddemeas 34178 dya2iocuni 34226 oms0 34240 0elcarsg 34250 eulerpartlemt 34314 bnj1143 34745 mrsubrn 35459 msubrn 35475 mthmpps 35528 bj-nuliotaALT 37000 bj-restsn0 37027 bj-restsn10 37028 bj-imdirco 37132 pibt2 37359 mblfinlem2 37606 mblfinlem3 37607 ismblfin 37609 sstotbnd2 37722 isbnd3 37732 ssbnd 37736 heiborlem6 37764 lub0N 39131 glb0N 39135 0psubN 39692 padd01 39754 padd02 39755 pol0N 39852 pcl0N 39865 0psubclN 39886 mzpcompact2lem 42707 itgocn 43121 oaabsb 43252 oege1 43264 nnoeomeqom 43270 cantnfresb 43282 omabs2 43290 omcl2 43291 tfsconcatb0 43302 nadd2rabex 43344 fpwfvss 43370 nla0002 43382 nla0003 43383 nla0001 43384 fvnonrel 43555 clcnvlem 43581 cnvrcl0 43583 cnvtrcl0 43584 0he 43740 ntrclskb 44027 gru0eld 44193 mnu0eld 44229 mnuprdlem4 44239 mnuprd 44240 founiiun0 45140 uzfissfz 45282 limcdm0 45578 cncfiooicc 45854 itgvol0 45928 ibliooicc 45931 ovn0 46526 sprssspr 47414 isubgr0uhgr 47805 ssnn0ssfz 48211 ipolub0 48837 ipoglb0 48839 setrec2fun 49207 setrec2mpt 49212 |
| Copyright terms: Public domain | W3C validator |