![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4344 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3999 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3963 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-dif 3966 df-ss 3980 df-nul 4340 |
This theorem is referenced by: ss0b 4407 0pss 4453 npss0 4454 ssdifeq0 4493 pwpw0 4818 sssn 4831 sspr 4840 sstp 4841 uni0 4940 int0el 4984 0disj 5141 disjx0 5143 tr0 5278 al0ssb 5314 0elpw 5362 rel0 5812 0ima 6098 dmxpss 6193 dmsnopss 6236 dfpo2 6318 on0eqel 6510 iotassuni 6535 iotassuniOLD 6542 fun0 6633 f0 6790 fvmptss 7028 fvmptss2 7042 funressn 7179 riotassuni 7428 ordsuci 7828 frxp 8150 suppssdm 8201 suppun 8208 suppss 8218 suppssov1 8221 suppssov2 8222 suppss2 8224 suppssfv 8226 oaword1 8589 oaword2 8590 omwordri 8609 oewordri 8629 oeworde 8630 nnaword1 8666 naddword1 8728 mapssfset 8890 0domgOLD 9140 fodomr 9167 pwdom 9168 php 9245 phpOLD 9257 isinf 9294 isinfOLD 9295 fodomfir 9366 finsschain 9397 fipwuni 9464 fipwss 9467 wdompwdom 9616 inf3lemd 9665 inf3lem1 9666 cantnfle 9709 ttrclselem1 9763 tc0 9785 r1val1 9824 alephgeom 10120 infmap2 10255 cfub 10287 cf0 10289 cflecard 10291 cfle 10292 fin23lem16 10373 itunitc1 10458 ttukeylem6 10552 ttukeylem7 10553 canthwe 10689 wun0 10756 tsk0 10801 gruina 10856 grur1a 10857 uzssz 12897 xrsup0 13362 fzoss1 13723 fsuppmapnn0fiubex 14030 swrd00 14679 swrdlend 14688 repswswrd 14819 xptrrel 15016 relexpdmd 15080 relexprnd 15084 relexpfldd 15086 rtrclreclem4 15097 sum0 15754 fsumss 15758 fsumcvg3 15762 prod0 15976 0bits 16473 sadid1 16502 sadid2 16503 smu01lem 16519 smu01 16520 smu02 16521 lcmf0 16668 vdwmc2 17013 vdwlem13 17027 ramz2 17058 strfvss 17221 ressbasssg 17282 ressbasssOLD 17285 ress0 17289 ismred2 17648 acsfn 17704 acsfn0 17705 0ssc 17888 fullfunc 17960 fthfunc 17961 mrelatglb0 18619 cntzssv 19359 symgsssg 19500 efgsfo 19772 dprdsn 20071 lsp0 21025 lss0v 21033 lspsnat 21165 lsppratlem3 21169 lbsexg 21184 evpmss 21622 ocv0 21713 ocvz 21714 css1 21726 resspsrbas 22012 mhp0cl 22168 psr1crng 22204 psr1assa 22205 psr1tos 22206 psr1bas2 22207 vr1cl2 22210 ply1lss 22214 ply1subrg 22215 psr1plusg 22238 psr1vsca 22239 psr1mulr 22240 psr1ring 22264 psr1lmod 22266 psr1sca 22267 0opn 22926 toponsspwpw 22944 basdif0 22976 baspartn 22977 0cld 23062 ntr0 23105 cmpfi 23432 refun0 23539 xkouni 23623 xkoccn 23643 alexsubALTlem2 24072 ptcmplem2 24077 tsmsfbas 24152 setsmstopn 24506 restmetu 24599 tngtopn 24687 iccntr 24857 xrge0gsumle 24869 xrge0tsms 24870 metdstri 24887 ovol0 25542 0mbl 25588 itg1le 25763 itgioo 25866 limcnlp 25928 dvbsss 25952 plyssc 26254 fsumharmonic 27070 nulsslt 27857 nulssgt 27858 bday0b 27890 madess 27930 oldssmade 27931 precsexlem8 28253 pw2bday 28433 egrsubgr 29309 0grsubgr 29310 0uhgrsubgr 29311 chocnul 31357 span0 31571 chsup0 31577 ssnnssfz 32796 xrge0tsmsd 33048 elrgspnlem4 33235 unitprodclb 33397 ddemeas 34217 dya2iocuni 34265 oms0 34279 0elcarsg 34289 eulerpartlemt 34353 bnj1143 34783 mrsubrn 35498 msubrn 35514 mthmpps 35567 bj-nuliotaALT 37041 bj-restsn0 37068 bj-restsn10 37069 bj-imdirco 37173 pibt2 37400 mblfinlem2 37645 mblfinlem3 37646 ismblfin 37648 sstotbnd2 37761 isbnd3 37771 ssbnd 37775 heiborlem6 37803 lub0N 39171 glb0N 39175 0psubN 39732 padd01 39794 padd02 39795 pol0N 39892 pcl0N 39905 0psubclN 39926 mzpcompact2lem 42739 itgocn 43153 oaabsb 43284 oege1 43296 nnoeomeqom 43302 cantnfresb 43314 omabs2 43322 omcl2 43323 tfsconcatb0 43334 nadd2rabex 43376 fpwfvss 43402 nla0002 43414 nla0003 43415 nla0001 43416 fvnonrel 43587 clcnvlem 43613 cnvrcl0 43615 cnvtrcl0 43616 0he 43772 ntrclskb 44059 gru0eld 44225 mnu0eld 44261 mnuprdlem4 44271 mnuprd 44272 founiiun0 45133 uzfissfz 45276 limcdm0 45574 cncfiooicc 45850 itgvol0 45924 ibliooicc 45927 ovn0 46522 sprssspr 47406 isubgr0uhgr 47797 ssnn0ssfz 48194 ipolub0 48781 ipoglb0 48783 setrec2fun 48923 setrec2mpt 48928 |
Copyright terms: Public domain | W3C validator |