| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3941 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3908 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: ss0b 4354 0pss 4400 npss0 4401 ssdifeq0 4440 pwpw0 4767 sssn 4780 sspr 4789 sstp 4790 uni0 4889 int0el 4932 0disj 5088 disjx0 5090 tr0 5214 al0ssb 5250 0elpw 5298 rel0 5746 0ima 6033 dmxpss 6124 dmsnopss 6167 dfpo2 6248 on0eqel 6436 iotassuni 6461 fun0 6551 f0 6709 fvmptss 6946 fvmptss2 6960 funressn 7097 riotassuni 7350 ordsuci 7748 frxp 8066 suppssdm 8117 suppun 8124 suppss 8134 suppssov1 8137 suppssov2 8138 suppss2 8140 suppssfv 8142 oaword1 8477 oaword2 8478 omwordri 8497 oewordri 8517 oeworde 8518 nnaword1 8554 naddword1 8616 mapssfset 8785 fodomr 9052 pwdom 9053 php 9131 isinf 9165 isinfOLD 9166 fodomfir 9237 finsschain 9268 fipwuni 9335 fipwss 9338 wdompwdom 9489 inf3lemd 9542 inf3lem1 9543 cantnfle 9586 ttrclselem1 9640 tc0 9662 r1val1 9701 alephgeom 9995 infmap2 10130 cfub 10162 cf0 10164 cflecard 10166 cfle 10167 fin23lem16 10248 itunitc1 10333 ttukeylem6 10427 ttukeylem7 10428 canthwe 10564 wun0 10631 tsk0 10676 gruina 10731 grur1a 10732 uzssz 12774 xrsup0 13243 fzoss1 13607 fsuppmapnn0fiubex 13917 swrd00 14569 swrdlend 14578 repswswrd 14708 xptrrel 14905 relexpdmd 14969 relexprnd 14973 relexpfldd 14975 rtrclreclem4 14986 sum0 15646 fsumss 15650 fsumcvg3 15654 prod0 15868 0bits 16368 sadid1 16397 sadid2 16398 smu01lem 16414 smu01 16415 smu02 16416 lcmf0 16563 vdwmc2 16909 vdwlem13 16923 ramz2 16954 strfvss 17116 ressbasssg 17166 ressbasssOLD 17169 ress0 17172 ismred2 17523 acsfn 17583 acsfn0 17584 0ssc 17762 fullfunc 17833 fthfunc 17834 mrelatglb0 18485 cntzssv 19225 symgsssg 19364 efgsfo 19636 dprdsn 19935 lsp0 20930 lss0v 20938 lspsnat 21070 lsppratlem3 21074 lbsexg 21089 evpmss 21511 ocv0 21602 ocvz 21603 css1 21615 resspsrbas 21899 mhp0cl 22049 psr1crng 22087 psr1assa 22088 psr1tos 22089 psr1bas2 22090 vr1cl2 22093 ply1lss 22097 ply1subrg 22098 psr1plusg 22121 psr1vsca 22122 psr1mulr 22123 psr1ring 22147 psr1lmod 22149 psr1sca 22150 0opn 22807 toponsspwpw 22825 basdif0 22856 baspartn 22857 0cld 22941 ntr0 22984 cmpfi 23311 refun0 23418 xkouni 23502 xkoccn 23522 alexsubALTlem2 23951 ptcmplem2 23956 tsmsfbas 24031 setsmstopn 24382 restmetu 24474 tngtopn 24554 iccntr 24726 xrge0gsumle 24738 xrge0tsms 24739 metdstri 24756 ovol0 25410 0mbl 25456 itg1le 25630 itgioo 25733 limcnlp 25795 dvbsss 25819 plyssc 26121 fsumharmonic 26938 nulsslt 27726 nulssgt 27727 bday0b 27762 madess 27808 oldssmade 27809 oldss 27810 precsexlem8 28139 egrsubgr 29240 0grsubgr 29241 0uhgrsubgr 29242 chocnul 31290 span0 31504 chsup0 31510 ssnnssfz 32743 xrge0tsmsd 33028 elrgspnlem4 33198 unitprodclb 33339 constrfiss 33720 ddemeas 34205 dya2iocuni 34253 oms0 34267 0elcarsg 34277 eulerpartlemt 34341 bnj1143 34759 mrsubrn 35488 msubrn 35504 mthmpps 35557 bj-nuliotaALT 37034 bj-restsn0 37061 bj-restsn10 37062 bj-imdirco 37166 pibt2 37393 mblfinlem2 37640 mblfinlem3 37641 ismblfin 37643 sstotbnd2 37756 isbnd3 37766 ssbnd 37770 heiborlem6 37798 lub0N 39170 glb0N 39174 0psubN 39731 padd01 39793 padd02 39794 pol0N 39891 pcl0N 39904 0psubclN 39925 mzpcompact2lem 42727 itgocn 43140 oaabsb 43270 oege1 43282 nnoeomeqom 43288 cantnfresb 43300 omabs2 43308 omcl2 43309 tfsconcatb0 43320 nadd2rabex 43362 fpwfvss 43388 nla0002 43400 nla0003 43401 nla0001 43402 fvnonrel 43573 clcnvlem 43599 cnvrcl0 43601 cnvtrcl0 43602 0he 43758 ntrclskb 44045 gru0eld 44205 mnu0eld 44241 mnuprdlem4 44251 mnuprd 44252 founiiun0 45171 uzfissfz 45309 limcdm0 45603 cncfiooicc 45879 itgvol0 45953 ibliooicc 45956 ovn0 46551 sprssspr 47469 isubgr0uhgr 47861 ssnn0ssfz 48337 ipolub0 48980 ipoglb0 48982 discsubc 49053 iinfconstbas 49055 nelsubclem 49056 setc1onsubc 49591 setrec2fun 49681 setrec2mpt 49686 |
| Copyright terms: Public domain | W3C validator |