![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 4012 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: ss0b 4424 0pss 4470 npss0 4471 ssdifeq0 4510 pwpw0 4838 sssn 4851 sspr 4860 sstp 4861 uni0 4959 int0el 5003 0disj 5159 disjx0 5161 tr0 5296 al0ssb 5326 0elpw 5374 rel0 5823 0ima 6107 dmxpss 6202 dmsnopss 6245 dfpo2 6327 on0eqel 6519 iotassuni 6545 iotassuniOLD 6552 fun0 6643 f0 6802 fvmptss 7041 fvmptss2 7055 funressn 7193 riotassuni 7445 ordsuci 7844 frxp 8167 suppssdm 8218 suppun 8225 suppss 8235 suppssov1 8238 suppssov2 8239 suppss2 8241 suppssfv 8243 oaword1 8608 oaword2 8609 omwordri 8628 oewordri 8648 oeworde 8649 nnaword1 8685 naddword1 8747 mapssfset 8909 0domgOLD 9167 fodomr 9194 pwdom 9195 php 9273 phpOLD 9285 isinf 9323 isinfOLD 9324 fodomfir 9396 finsschain 9429 fipwuni 9495 fipwss 9498 wdompwdom 9647 inf3lemd 9696 inf3lem1 9697 cantnfle 9740 ttrclselem1 9794 tc0 9816 r1val1 9855 alephgeom 10151 infmap2 10286 cfub 10318 cf0 10320 cflecard 10322 cfle 10323 fin23lem16 10404 itunitc1 10489 ttukeylem6 10583 ttukeylem7 10584 canthwe 10720 wun0 10787 tsk0 10832 gruina 10887 grur1a 10888 uzssz 12924 xrsup0 13385 fzoss1 13743 fsuppmapnn0fiubex 14043 swrd00 14692 swrdlend 14701 repswswrd 14832 xptrrel 15029 relexpdmd 15093 relexprnd 15097 relexpfldd 15099 rtrclreclem4 15110 sum0 15769 fsumss 15773 fsumcvg3 15777 prod0 15991 0bits 16485 sadid1 16514 sadid2 16515 smu01lem 16531 smu01 16532 smu02 16533 lcmf0 16681 vdwmc2 17026 vdwlem13 17040 ramz2 17071 strfvss 17234 ressbasssg 17295 ressbasssOLD 17298 ress0 17302 ismred2 17661 acsfn 17717 acsfn0 17718 0ssc 17901 fullfunc 17973 fthfunc 17974 mrelatglb0 18631 cntzssv 19368 symgsssg 19509 efgsfo 19781 dprdsn 20080 lsp0 21030 lss0v 21038 lspsnat 21170 lsppratlem3 21174 lbsexg 21189 evpmss 21627 ocv0 21718 ocvz 21719 css1 21731 resspsrbas 22017 mhp0cl 22173 psr1crng 22209 psr1assa 22210 psr1tos 22211 psr1bas2 22212 vr1cl2 22215 ply1lss 22219 ply1subrg 22220 psr1plusg 22243 psr1vsca 22244 psr1mulr 22245 psr1ring 22269 psr1lmod 22271 psr1sca 22272 0opn 22931 toponsspwpw 22949 basdif0 22981 baspartn 22982 0cld 23067 ntr0 23110 cmpfi 23437 refun0 23544 xkouni 23628 xkoccn 23648 alexsubALTlem2 24077 ptcmplem2 24082 tsmsfbas 24157 setsmstopn 24511 restmetu 24604 tngtopn 24692 iccntr 24862 xrge0gsumle 24874 xrge0tsms 24875 metdstri 24892 ovol0 25547 0mbl 25593 itg1le 25768 itgioo 25871 limcnlp 25933 dvbsss 25957 plyssc 26259 fsumharmonic 27073 nulsslt 27860 nulssgt 27861 bday0b 27893 madess 27933 oldssmade 27934 precsexlem8 28256 pw2bday 28436 egrsubgr 29312 0grsubgr 29313 0uhgrsubgr 29314 chocnul 31360 span0 31574 chsup0 31580 ssnnssfz 32792 xrge0tsmsd 33041 unitprodclb 33382 ddemeas 34200 dya2iocuni 34248 oms0 34262 0elcarsg 34272 eulerpartlemt 34336 bnj1143 34766 mrsubrn 35481 msubrn 35497 mthmpps 35550 bj-nuliotaALT 37024 bj-restsn0 37051 bj-restsn10 37052 bj-imdirco 37156 pibt2 37383 mblfinlem2 37618 mblfinlem3 37619 ismblfin 37621 sstotbnd2 37734 isbnd3 37744 ssbnd 37748 heiborlem6 37776 lub0N 39145 glb0N 39149 0psubN 39706 padd01 39768 padd02 39769 pol0N 39866 pcl0N 39879 0psubclN 39900 mzpcompact2lem 42707 itgocn 43121 oaabsb 43256 oege1 43268 nnoeomeqom 43274 cantnfresb 43286 omabs2 43294 omcl2 43295 tfsconcatb0 43306 nadd2rabex 43348 fpwfvss 43374 nla0002 43386 nla0003 43387 nla0001 43388 fvnonrel 43559 clcnvlem 43585 cnvrcl0 43587 cnvtrcl0 43588 0he 43744 ntrclskb 44031 gru0eld 44198 mnu0eld 44234 mnuprdlem4 44244 mnuprd 44245 founiiun0 45097 uzfissfz 45241 limcdm0 45539 cncfiooicc 45815 itgvol0 45889 ibliooicc 45892 ovn0 46487 sprssspr 47355 isubgr0uhgr 47743 ssnn0ssfz 48074 ipolub0 48664 ipoglb0 48666 setrec2fun 48784 setrec2mpt 48789 |
Copyright terms: Public domain | W3C validator |