Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4264 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3925 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: ss0b 4331 0pss 4378 npss0 4379 ssdifeq0 4417 pwpw0 4746 sssn 4759 sspr 4766 sstp 4767 pwsnOLD 4832 uni0 4869 int0el 4910 0disj 5066 disjx0 5068 tr0 5202 al0ssb 5232 0elpw 5278 rel0 5709 0ima 5986 dmxpss 6074 dmsnopss 6117 dfpo2 6199 on0eqel 6384 iotassuni 6412 fun0 6499 f0 6655 fvmptss 6887 fvmptss2 6900 funressn 7031 riotassuni 7273 frxp 7967 suppssdm 7993 suppun 8000 suppss 8010 suppssOLD 8011 suppssov1 8014 suppss2 8016 suppssfv 8018 oaword1 8383 oaword2 8384 omwordri 8403 oewordri 8423 oeworde 8424 nnaword1 8460 mapssfset 8639 0domgOLD 8888 fodomr 8915 pwdom 8916 php 8993 phpOLD 9005 isinf 9036 finsschain 9126 fipwuni 9185 fipwss 9188 wdompwdom 9337 inf3lemd 9385 inf3lem1 9386 cantnfle 9429 ttrclselem1 9483 tc0 9505 r1val1 9544 alephgeom 9838 infmap2 9974 cfub 10005 cf0 10007 cflecard 10009 cfle 10010 fin23lem16 10091 itunitc1 10176 ttukeylem6 10270 ttukeylem7 10271 canthwe 10407 wun0 10474 tsk0 10519 gruina 10574 grur1a 10575 uzssz 12603 xrsup0 13057 fzoss1 13414 fsuppmapnn0fiubex 13712 swrd00 14357 swrdlend 14366 repswswrd 14497 xptrrel 14691 relexpdmd 14755 relexprnd 14759 relexpfldd 14761 rtrclreclem4 14772 sum0 15433 fsumss 15437 fsumcvg3 15441 prod0 15653 0bits 16146 sadid1 16175 sadid2 16176 smu01lem 16192 smu01 16193 smu02 16194 lcmf0 16339 vdwmc2 16680 vdwlem13 16694 ramz2 16725 strfvss 16888 ressbasss 16950 ress0 16953 ismred2 17312 acsfn 17368 acsfn0 17369 0ssc 17552 fullfunc 17622 fthfunc 17623 mrelatglb0 18279 cntzssv 18934 symgsssg 19075 efgsfo 19345 dprdsn 19639 lsp0 20271 lss0v 20278 lspsnat 20407 lsppratlem3 20411 lbsexg 20426 evpmss 20791 ocv0 20882 ocvz 20883 css1 20895 resspsrbas 21184 mhp0cl 21336 psr1crng 21358 psr1assa 21359 psr1tos 21360 psr1bas2 21361 vr1cl2 21364 ply1lss 21367 ply1subrg 21368 psr1plusg 21393 psr1vsca 21394 psr1mulr 21395 psr1ring 21418 psr1lmod 21420 psr1sca 21421 0opn 22053 toponsspwpw 22071 basdif0 22103 baspartn 22104 0cld 22189 ntr0 22232 cmpfi 22559 refun0 22666 xkouni 22750 xkoccn 22770 alexsubALTlem2 23199 ptcmplem2 23204 tsmsfbas 23279 setsmstopn 23633 restmetu 23726 tngtopn 23814 iccntr 23984 xrge0gsumle 23996 xrge0tsms 23997 metdstri 24014 ovol0 24657 0mbl 24703 itg1le 24878 itgioo 24980 limcnlp 25042 dvbsss 25066 plyssc 25361 fsumharmonic 26161 egrsubgr 27644 0grsubgr 27645 0uhgrsubgr 27646 chocnul 29690 span0 29904 chsup0 29910 ssnnssfz 31108 xrge0tsmsd 31317 ddemeas 32204 dya2iocuni 32250 oms0 32264 0elcarsg 32274 eulerpartlemt 32338 bnj1143 32770 mrsubrn 33475 msubrn 33491 mthmpps 33544 nulsslt 33991 nulssgt 33992 bday0b 34024 madess 34059 oldssmade 34060 bj-nuliotaALT 35229 bj-restsn0 35256 bj-restsn10 35257 bj-imdirco 35361 pibt2 35588 mblfinlem2 35815 mblfinlem3 35816 ismblfin 35818 sstotbnd2 35932 isbnd3 35942 ssbnd 35946 heiborlem6 35974 lub0N 37203 glb0N 37207 0psubN 37763 padd01 37825 padd02 37826 pol0N 37923 pcl0N 37936 0psubclN 37957 sn-iotassuni 40196 mzpcompact2lem 40573 itgocn 40989 fvnonrel 41205 clcnvlem 41231 cnvrcl0 41233 cnvtrcl0 41234 0he 41390 ntrclskb 41679 gru0eld 41847 mnu0eld 41883 mnuprdlem4 41893 mnuprd 41894 founiiun0 42728 uzfissfz 42865 limcdm0 43159 cncfiooicc 43435 itgvol0 43509 ibliooicc 43512 ovn0 44104 sprssspr 44933 ssnn0ssfz 45685 ipolub0 46278 ipoglb0 46280 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |