| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3934 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: ss0b 4350 0pss 4396 npss0 4397 ssdifeq0 4436 pwpw0 4764 sssn 4777 sspr 4786 sstp 4787 uni0OLD 4887 int0el 4929 0disj 5086 disjx0 5088 tr0 5212 al0ssb 5248 0elpw 5296 rel0 5743 0ima 6031 dmxpss 6123 dmsnopss 6166 dfpo2 6248 on0eqel 6436 iotassuni 6461 fun0 6551 f0 6709 fvmptss 6947 fvmptss2 6961 funressn 7098 riotassuni 7349 ordsuci 7747 frxp 8062 suppssdm 8113 suppun 8120 suppss 8130 suppssov1 8133 suppssov2 8134 suppss2 8136 suppssfv 8138 oaword1 8473 oaword2 8474 omwordri 8493 oewordri 8513 oeworde 8514 nnaword1 8550 naddword1 8612 mapssfset 8781 fodomr 9048 pwdom 9049 php 9123 isinf 9156 fodomfir 9219 finsschain 9250 fipwuni 9317 fipwss 9320 wdompwdom 9471 inf3lemd 9524 inf3lem1 9525 cantnfle 9568 ttrclselem1 9622 tc0 9642 r1val1 9686 alephgeom 9980 infmap2 10115 cfub 10147 cf0 10149 cflecard 10151 cfle 10152 fin23lem16 10233 itunitc1 10318 ttukeylem6 10412 ttukeylem7 10413 canthwe 10549 wun0 10616 tsk0 10661 gruina 10716 grur1a 10717 uzssz 12759 xrsup0 13224 fzoss1 13588 fsuppmapnn0fiubex 13901 swrd00 14554 swrdlend 14563 repswswrd 14693 xptrrel 14889 relexpdmd 14953 relexprnd 14957 relexpfldd 14959 rtrclreclem4 14970 sum0 15630 fsumss 15634 fsumcvg3 15638 prod0 15852 0bits 16352 sadid1 16381 sadid2 16382 smu01lem 16398 smu01 16399 smu02 16400 lcmf0 16547 vdwmc2 16893 vdwlem13 16907 ramz2 16938 strfvss 17100 ressbasssg 17150 ressbasssOLD 17153 ress0 17156 ismred2 17507 acsfn 17567 acsfn0 17568 0ssc 17746 fullfunc 17817 fthfunc 17818 mrelatglb0 18469 cntzssv 19242 symgsssg 19381 efgsfo 19653 dprdsn 19952 lsp0 20944 lss0v 20952 lspsnat 21084 lsppratlem3 21088 lbsexg 21103 evpmss 21525 ocv0 21616 ocvz 21617 css1 21629 resspsrbas 21912 mhp0cl 22062 psr1crng 22100 psr1assa 22101 psr1tos 22102 psr1bas2 22103 vr1cl2 22106 ply1lss 22110 ply1subrg 22111 psr1plusg 22134 psr1vsca 22135 psr1mulr 22136 psr1ring 22160 psr1lmod 22162 psr1sca 22163 0opn 22820 toponsspwpw 22838 basdif0 22869 baspartn 22870 0cld 22954 ntr0 22997 cmpfi 23324 refun0 23431 xkouni 23515 xkoccn 23535 alexsubALTlem2 23964 ptcmplem2 23969 tsmsfbas 24044 setsmstopn 24394 restmetu 24486 tngtopn 24566 iccntr 24738 xrge0gsumle 24750 xrge0tsms 24751 metdstri 24768 ovol0 25422 0mbl 25468 itg1le 25642 itgioo 25745 limcnlp 25807 dvbsss 25831 plyssc 26133 fsumharmonic 26950 nulsslt 27739 nulssgt 27740 bday0b 27775 madess 27822 oldssmade 27823 oldss 27824 precsexlem8 28153 egrsubgr 29257 0grsubgr 29258 0uhgrsubgr 29259 chocnul 31310 span0 31524 chsup0 31530 ssnnssfz 32774 indconst0 32846 xrge0tsmsd 33049 elrgspnlem4 33219 unitprodclb 33361 constrfiss 33785 ddemeas 34270 dya2iocuni 34317 oms0 34331 0elcarsg 34341 eulerpartlemt 34405 bnj1143 34823 mrsubrn 35578 msubrn 35594 mthmpps 35647 bj-nuliotaALT 37123 bj-restsn0 37150 bj-restsn10 37151 bj-imdirco 37255 pibt2 37482 mblfinlem2 37719 mblfinlem3 37720 ismblfin 37722 sstotbnd2 37835 isbnd3 37845 ssbnd 37849 heiborlem6 37877 lub0N 39309 glb0N 39313 0psubN 39869 padd01 39931 padd02 39932 pol0N 40029 pcl0N 40042 0psubclN 40063 mzpcompact2lem 42869 itgocn 43282 oaabsb 43412 oege1 43424 nnoeomeqom 43430 cantnfresb 43442 omabs2 43450 omcl2 43451 tfsconcatb0 43462 nadd2rabex 43504 fpwfvss 43530 nla0002 43542 nla0003 43543 nla0001 43544 fvnonrel 43715 clcnvlem 43741 cnvrcl0 43743 cnvtrcl0 43744 0he 43900 ntrclskb 44187 gru0eld 44347 mnu0eld 44383 mnuprdlem4 44393 mnuprd 44394 founiiun0 45312 uzfissfz 45450 limcdm0 45743 cncfiooicc 46017 itgvol0 46091 ibliooicc 46094 ovn0 46689 sprssspr 47606 isubgr0uhgr 47998 ssnn0ssfz 48474 ipolub0 49117 ipoglb0 49119 discsubc 49190 iinfconstbas 49192 nelsubclem 49193 setc1onsubc 49728 setrec2fun 49818 setrec2mpt 49823 |
| Copyright terms: Public domain | W3C validator |