| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ss | Structured version Visualization version GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3950 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: ss0b 4364 0pss 4410 npss0 4411 ssdifeq0 4450 pwpw0 4777 sssn 4790 sspr 4799 sstp 4800 uni0 4899 int0el 4943 0disj 5100 disjx0 5102 tr0 5227 al0ssb 5263 0elpw 5311 rel0 5762 0ima 6049 dmxpss 6144 dmsnopss 6187 dfpo2 6269 on0eqel 6458 iotassuni 6483 iotassuniOLD 6490 fun0 6581 f0 6741 fvmptss 6980 fvmptss2 6994 funressn 7131 riotassuni 7384 ordsuci 7784 frxp 8105 suppssdm 8156 suppun 8163 suppss 8173 suppssov1 8176 suppssov2 8177 suppss2 8179 suppssfv 8181 oaword1 8516 oaword2 8517 omwordri 8536 oewordri 8556 oeworde 8557 nnaword1 8593 naddword1 8655 mapssfset 8824 fodomr 9092 pwdom 9093 php 9171 isinf 9207 isinfOLD 9208 fodomfir 9279 finsschain 9310 fipwuni 9377 fipwss 9380 wdompwdom 9531 inf3lemd 9580 inf3lem1 9581 cantnfle 9624 ttrclselem1 9678 tc0 9700 r1val1 9739 alephgeom 10035 infmap2 10170 cfub 10202 cf0 10204 cflecard 10206 cfle 10207 fin23lem16 10288 itunitc1 10373 ttukeylem6 10467 ttukeylem7 10468 canthwe 10604 wun0 10671 tsk0 10716 gruina 10771 grur1a 10772 uzssz 12814 xrsup0 13283 fzoss1 13647 fsuppmapnn0fiubex 13957 swrd00 14609 swrdlend 14618 repswswrd 14749 xptrrel 14946 relexpdmd 15010 relexprnd 15014 relexpfldd 15016 rtrclreclem4 15027 sum0 15687 fsumss 15691 fsumcvg3 15695 prod0 15909 0bits 16409 sadid1 16438 sadid2 16439 smu01lem 16455 smu01 16456 smu02 16457 lcmf0 16604 vdwmc2 16950 vdwlem13 16964 ramz2 16995 strfvss 17157 ressbasssg 17207 ressbasssOLD 17210 ress0 17213 ismred2 17564 acsfn 17620 acsfn0 17621 0ssc 17799 fullfunc 17870 fthfunc 17871 mrelatglb0 18520 cntzssv 19260 symgsssg 19397 efgsfo 19669 dprdsn 19968 lsp0 20915 lss0v 20923 lspsnat 21055 lsppratlem3 21059 lbsexg 21074 evpmss 21495 ocv0 21586 ocvz 21587 css1 21599 resspsrbas 21883 mhp0cl 22033 psr1crng 22071 psr1assa 22072 psr1tos 22073 psr1bas2 22074 vr1cl2 22077 ply1lss 22081 ply1subrg 22082 psr1plusg 22105 psr1vsca 22106 psr1mulr 22107 psr1ring 22131 psr1lmod 22133 psr1sca 22134 0opn 22791 toponsspwpw 22809 basdif0 22840 baspartn 22841 0cld 22925 ntr0 22968 cmpfi 23295 refun0 23402 xkouni 23486 xkoccn 23506 alexsubALTlem2 23935 ptcmplem2 23940 tsmsfbas 24015 setsmstopn 24366 restmetu 24458 tngtopn 24538 iccntr 24710 xrge0gsumle 24722 xrge0tsms 24723 metdstri 24740 ovol0 25394 0mbl 25440 itg1le 25614 itgioo 25717 limcnlp 25779 dvbsss 25803 plyssc 26105 fsumharmonic 26922 nulsslt 27709 nulssgt 27710 bday0b 27742 madess 27788 oldssmade 27789 precsexlem8 28116 egrsubgr 29204 0grsubgr 29205 0uhgrsubgr 29206 chocnul 31257 span0 31471 chsup0 31477 ssnnssfz 32710 xrge0tsmsd 33002 elrgspnlem4 33196 unitprodclb 33360 constrfiss 33741 ddemeas 34226 dya2iocuni 34274 oms0 34288 0elcarsg 34298 eulerpartlemt 34362 bnj1143 34780 mrsubrn 35500 msubrn 35516 mthmpps 35569 bj-nuliotaALT 37046 bj-restsn0 37073 bj-restsn10 37074 bj-imdirco 37178 pibt2 37405 mblfinlem2 37652 mblfinlem3 37653 ismblfin 37655 sstotbnd2 37768 isbnd3 37778 ssbnd 37782 heiborlem6 37810 lub0N 39182 glb0N 39186 0psubN 39743 padd01 39805 padd02 39806 pol0N 39903 pcl0N 39916 0psubclN 39937 mzpcompact2lem 42739 itgocn 43153 oaabsb 43283 oege1 43295 nnoeomeqom 43301 cantnfresb 43313 omabs2 43321 omcl2 43322 tfsconcatb0 43333 nadd2rabex 43375 fpwfvss 43401 nla0002 43413 nla0003 43414 nla0001 43415 fvnonrel 43586 clcnvlem 43612 cnvrcl0 43614 cnvtrcl0 43615 0he 43771 ntrclskb 44058 gru0eld 44218 mnu0eld 44254 mnuprdlem4 44264 mnuprd 44265 founiiun0 45184 uzfissfz 45322 limcdm0 45616 cncfiooicc 45892 itgvol0 45966 ibliooicc 45969 ovn0 46564 sprssspr 47482 isubgr0uhgr 47873 ssnn0ssfz 48337 ipolub0 48980 ipoglb0 48982 discsubc 49053 iinfconstbas 49055 nelsubclem 49056 setc1onsubc 49591 setrec2fun 49681 setrec2mpt 49686 |
| Copyright terms: Public domain | W3C validator |