Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Visualization version   GIF version

Theorem oev2 8139
 Description: Alternate value of ordinal exponentiation. Compare oev 8130. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 7157 . . . . . 6 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8136 . . . . . 6 (∅ ↑o ∅) = 1o
31, 2syl6eq 2877 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = 1o)
4 fveq2 6667 . . . . . . . 8 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
5 1oex 8101 . . . . . . . . 9 1o ∈ V
65rdg0 8048 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
74, 6syl6eq 2877 . . . . . . 7 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = 1o)
8 inteq 4877 . . . . . . . 8 (𝐵 = ∅ → 𝐵 = ∅)
9 int0 4888 . . . . . . . 8 ∅ = V
108, 9syl6eq 2877 . . . . . . 7 (𝐵 = ∅ → 𝐵 = V)
117, 10ineq12d 4194 . . . . . 6 (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = (1o ∩ V))
12 inv1 4352 . . . . . . 7 (1o ∩ V) = 1o
1312a1i 11 . . . . . 6 (𝐴 = ∅ → (1o ∩ V) = 1o)
1411, 13sylan9eqr 2883 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = 1o)
153, 14eqtr4d 2864 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
16 oveq1 7155 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
17 oe0m1 8137 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1817biimpa 477 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
1916, 18sylan9eqr 2883 . . . . . 6 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019an32s 648 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ∅)
21 int0el 4905 . . . . . . . 8 (∅ ∈ 𝐵 𝐵 = ∅)
2221ineq2d 4193 . . . . . . 7 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅))
23 in0 4349 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅) = ∅
2422, 23syl6eq 2877 . . . . . 6 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2524adantl 482 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2620, 25eqtr4d 2864 . . . 4 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
2715, 26oe0lem 8129 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
28 inteq 4877 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = ∅)
2928, 9syl6eq 2877 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = V)
3029difeq2d 4103 . . . . . . . 8 (𝐴 = ∅ → (V ∖ 𝐴) = (V ∖ V))
31 difid 4334 . . . . . . . 8 (V ∖ V) = ∅
3230, 31syl6eq 2877 . . . . . . 7 (𝐴 = ∅ → (V ∖ 𝐴) = ∅)
3332uneq2d 4143 . . . . . 6 (𝐴 = ∅ → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ ∅))
34 uncom 4133 . . . . . 6 ( 𝐵 ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ 𝐵)
35 un0 4348 . . . . . 6 ( 𝐵 ∪ ∅) = 𝐵
3633, 34, 353eqtr3g 2884 . . . . 5 (𝐴 = ∅ → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3736adantl 482 . . . 4 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3837ineq2d 4193 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
3927, 38eqtr4d 2864 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
40 oevn0 8131 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
41 int0el 4905 . . . . . . . . . 10 (∅ ∈ 𝐴 𝐴 = ∅)
4241difeq2d 4103 . . . . . . . . 9 (∅ ∈ 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
43 dif0 4336 . . . . . . . . 9 (V ∖ ∅) = V
4442, 43syl6eq 2877 . . . . . . . 8 (∅ ∈ 𝐴 → (V ∖ 𝐴) = V)
4544uneq2d 4143 . . . . . . 7 (∅ ∈ 𝐴 → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ V))
46 unv 4353 . . . . . . 7 ( 𝐵 ∪ V) = V
4745, 34, 463eqtr3g 2884 . . . . . 6 (∅ ∈ 𝐴 → ((V ∖ 𝐴) ∪ 𝐵) = V)
4847adantl 482 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((V ∖ 𝐴) ∪ 𝐵) = V)
4948ineq2d 4193 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V))
50 inv1 4352 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)
5149, 50syl6req 2878 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5240, 51eqtrd 2861 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5339, 52oe0lem 8129 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  Vcvv 3500   ∖ cdif 3937   ∪ cun 3938   ∩ cin 3939  ∅c0 4295  ∩ cint 4874   ↦ cmpt 5143  Oncon0 6189  ‘cfv 6352  (class class class)co 7148  reccrdg 8036  1oc1o 8086   ·o comu 8091   ↑o coe 8092 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oexp 8099 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator