Proof of Theorem oev2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq12 7440 | . . . . . 6
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ↑o 𝐵) = (∅ ↑o
∅)) | 
| 2 |  | oe0m0 8558 | . . . . . 6
⊢ (∅
↑o ∅) = 1o | 
| 3 | 1, 2 | eqtrdi 2793 | . . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ↑o 𝐵) =
1o) | 
| 4 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)),
1o)‘∅)) | 
| 5 |  | 1oex 8516 | . . . . . . . . 9
⊢
1o ∈ V | 
| 6 | 5 | rdg0 8461 | . . . . . . . 8
⊢
(rec((𝑥 ∈ V
↦ (𝑥
·o 𝐴)),
1o)‘∅) = 1o | 
| 7 | 4, 6 | eqtrdi 2793 | . . . . . . 7
⊢ (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) =
1o) | 
| 8 |  | inteq 4949 | . . . . . . . 8
⊢ (𝐵 = ∅ → ∩ 𝐵 =
∩ ∅) | 
| 9 |  | int0 4962 | . . . . . . . 8
⊢ ∩ ∅ = V | 
| 10 | 8, 9 | eqtrdi 2793 | . . . . . . 7
⊢ (𝐵 = ∅ → ∩ 𝐵 =
V) | 
| 11 | 7, 10 | ineq12d 4221 | . . . . . 6
⊢ (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵) =
(1o ∩ V)) | 
| 12 |  | inv1 4398 | . . . . . . 7
⊢
(1o ∩ V) = 1o | 
| 13 | 12 | a1i 11 | . . . . . 6
⊢ (𝐴 = ∅ → (1o
∩ V) = 1o) | 
| 14 | 11, 13 | sylan9eqr 2799 | . . . . 5
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵) =
1o) | 
| 15 | 3, 14 | eqtr4d 2780 | . . . 4
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵)) | 
| 16 |  | oveq1 7438 | . . . . . . 7
⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o
𝐵)) | 
| 17 |  | oe0m1 8559 | . . . . . . . 8
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ (∅
↑o 𝐵) =
∅)) | 
| 18 | 17 | biimpa 476 | . . . . . . 7
⊢ ((𝐵 ∈ On ∧ ∅ ∈
𝐵) → (∅
↑o 𝐵) =
∅) | 
| 19 | 16, 18 | sylan9eqr 2799 | . . . . . 6
⊢ (((𝐵 ∈ On ∧ ∅ ∈
𝐵) ∧ 𝐴 = ∅) → (𝐴 ↑o 𝐵) = ∅) | 
| 20 | 19 | an32s 652 | . . . . 5
⊢ (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈
𝐵) → (𝐴 ↑o 𝐵) = ∅) | 
| 21 |  | int0el 4979 | . . . . . . . 8
⊢ (∅
∈ 𝐵 → ∩ 𝐵 =
∅) | 
| 22 | 21 | ineq2d 4220 | . . . . . . 7
⊢ (∅
∈ 𝐵 →
((rec((𝑥 ∈ V ↦
(𝑥 ·o
𝐴)),
1o)‘𝐵)
∩ ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅)) | 
| 23 |  | in0 4395 | . . . . . . 7
⊢
((rec((𝑥 ∈ V
↦ (𝑥
·o 𝐴)),
1o)‘𝐵)
∩ ∅) = ∅ | 
| 24 | 22, 23 | eqtrdi 2793 | . . . . . 6
⊢ (∅
∈ 𝐵 →
((rec((𝑥 ∈ V ↦
(𝑥 ·o
𝐴)),
1o)‘𝐵)
∩ ∩ 𝐵) = ∅) | 
| 25 | 24 | adantl 481 | . . . . 5
⊢ (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈
𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵) =
∅) | 
| 26 | 20, 25 | eqtr4d 2780 | . . . 4
⊢ (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈
𝐵) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵)) | 
| 27 | 15, 26 | oe0lem 8551 | . . 3
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵)) | 
| 28 |  | inteq 4949 | . . . . . . . . . 10
⊢ (𝐴 = ∅ → ∩ 𝐴 =
∩ ∅) | 
| 29 | 28, 9 | eqtrdi 2793 | . . . . . . . . 9
⊢ (𝐴 = ∅ → ∩ 𝐴 =
V) | 
| 30 | 29 | difeq2d 4126 | . . . . . . . 8
⊢ (𝐴 = ∅ → (V ∖
∩ 𝐴) = (V ∖ V)) | 
| 31 |  | difid 4376 | . . . . . . . 8
⊢ (V
∖ V) = ∅ | 
| 32 | 30, 31 | eqtrdi 2793 | . . . . . . 7
⊢ (𝐴 = ∅ → (V ∖
∩ 𝐴) = ∅) | 
| 33 | 32 | uneq2d 4168 | . . . . . 6
⊢ (𝐴 = ∅ → (∩ 𝐵
∪ (V ∖ ∩ 𝐴)) = (∩ 𝐵 ∪
∅)) | 
| 34 |  | uncom 4158 | . . . . . 6
⊢ (∩ 𝐵
∪ (V ∖ ∩ 𝐴)) = ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵) | 
| 35 |  | un0 4394 | . . . . . 6
⊢ (∩ 𝐵
∪ ∅) = ∩ 𝐵 | 
| 36 | 33, 34, 35 | 3eqtr3g 2800 | . . . . 5
⊢ (𝐴 = ∅ → ((V ∖
∩ 𝐴) ∪ ∩ 𝐵) = ∩
𝐵) | 
| 37 | 36 | adantl 481 | . . . 4
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖
∩ 𝐴) ∪ ∩ 𝐵) = ∩
𝐵) | 
| 38 | 37 | ineq2d 4220 | . . 3
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∩ 𝐵)) | 
| 39 | 27, 38 | eqtr4d 2780 | . 2
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵))) | 
| 40 |  | oevn0 8553 | . . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)) | 
| 41 |  | int0el 4979 | . . . . . . . . . 10
⊢ (∅
∈ 𝐴 → ∩ 𝐴 =
∅) | 
| 42 | 41 | difeq2d 4126 | . . . . . . . . 9
⊢ (∅
∈ 𝐴 → (V ∖
∩ 𝐴) = (V ∖ ∅)) | 
| 43 |  | dif0 4378 | . . . . . . . . 9
⊢ (V
∖ ∅) = V | 
| 44 | 42, 43 | eqtrdi 2793 | . . . . . . . 8
⊢ (∅
∈ 𝐴 → (V ∖
∩ 𝐴) = V) | 
| 45 | 44 | uneq2d 4168 | . . . . . . 7
⊢ (∅
∈ 𝐴 → (∩ 𝐵
∪ (V ∖ ∩ 𝐴)) = (∩ 𝐵 ∪ V)) | 
| 46 |  | unv 4399 | . . . . . . 7
⊢ (∩ 𝐵
∪ V) = V | 
| 47 | 45, 34, 46 | 3eqtr3g 2800 | . . . . . 6
⊢ (∅
∈ 𝐴 → ((V ∖
∩ 𝐴) ∪ ∩ 𝐵) = V) | 
| 48 | 47 | adantl 481 | . . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵) = V) | 
| 49 | 48 | ineq2d 4220 | . . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V)) | 
| 50 |  | inv1 4398 | . . . 4
⊢
((rec((𝑥 ∈ V
↦ (𝑥
·o 𝐴)),
1o)‘𝐵)
∩ V) = (rec((𝑥 ∈ V
↦ (𝑥
·o 𝐴)),
1o)‘𝐵) | 
| 51 | 49, 50 | eqtr2di 2794 | . . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵))) | 
| 52 | 40, 51 | eqtrd 2777 | . 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵))) | 
| 53 | 39, 52 | oe0lem 8551 | 1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ ∩ 𝐴)
∪ ∩ 𝐵))) |