MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Visualization version   GIF version

Theorem oev2 8131
Description: Alternate value of ordinal exponentiation. Compare oev 8122. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 7144 . . . . . 6 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8128 . . . . . 6 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2849 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = 1o)
4 fveq2 6645 . . . . . . . 8 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
5 1oex 8093 . . . . . . . . 9 1o ∈ V
65rdg0 8040 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
74, 6eqtrdi 2849 . . . . . . 7 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = 1o)
8 inteq 4841 . . . . . . . 8 (𝐵 = ∅ → 𝐵 = ∅)
9 int0 4852 . . . . . . . 8 ∅ = V
108, 9eqtrdi 2849 . . . . . . 7 (𝐵 = ∅ → 𝐵 = V)
117, 10ineq12d 4140 . . . . . 6 (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = (1o ∩ V))
12 inv1 4302 . . . . . . 7 (1o ∩ V) = 1o
1312a1i 11 . . . . . 6 (𝐴 = ∅ → (1o ∩ V) = 1o)
1411, 13sylan9eqr 2855 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = 1o)
153, 14eqtr4d 2836 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
16 oveq1 7142 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
17 oe0m1 8129 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1817biimpa 480 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
1916, 18sylan9eqr 2855 . . . . . 6 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019an32s 651 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ∅)
21 int0el 4869 . . . . . . . 8 (∅ ∈ 𝐵 𝐵 = ∅)
2221ineq2d 4139 . . . . . . 7 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅))
23 in0 4299 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅) = ∅
2422, 23eqtrdi 2849 . . . . . 6 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2524adantl 485 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2620, 25eqtr4d 2836 . . . 4 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
2715, 26oe0lem 8121 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
28 inteq 4841 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = ∅)
2928, 9eqtrdi 2849 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = V)
3029difeq2d 4050 . . . . . . . 8 (𝐴 = ∅ → (V ∖ 𝐴) = (V ∖ V))
31 difid 4284 . . . . . . . 8 (V ∖ V) = ∅
3230, 31eqtrdi 2849 . . . . . . 7 (𝐴 = ∅ → (V ∖ 𝐴) = ∅)
3332uneq2d 4090 . . . . . 6 (𝐴 = ∅ → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ ∅))
34 uncom 4080 . . . . . 6 ( 𝐵 ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ 𝐵)
35 un0 4298 . . . . . 6 ( 𝐵 ∪ ∅) = 𝐵
3633, 34, 353eqtr3g 2856 . . . . 5 (𝐴 = ∅ → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3736adantl 485 . . . 4 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3837ineq2d 4139 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
3927, 38eqtr4d 2836 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
40 oevn0 8123 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
41 int0el 4869 . . . . . . . . . 10 (∅ ∈ 𝐴 𝐴 = ∅)
4241difeq2d 4050 . . . . . . . . 9 (∅ ∈ 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
43 dif0 4286 . . . . . . . . 9 (V ∖ ∅) = V
4442, 43eqtrdi 2849 . . . . . . . 8 (∅ ∈ 𝐴 → (V ∖ 𝐴) = V)
4544uneq2d 4090 . . . . . . 7 (∅ ∈ 𝐴 → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ V))
46 unv 4303 . . . . . . 7 ( 𝐵 ∪ V) = V
4745, 34, 463eqtr3g 2856 . . . . . 6 (∅ ∈ 𝐴 → ((V ∖ 𝐴) ∪ 𝐵) = V)
4847adantl 485 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((V ∖ 𝐴) ∪ 𝐵) = V)
4948ineq2d 4139 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V))
50 inv1 4302 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)
5149, 50eqtr2di 2850 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5240, 51eqtrd 2833 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5339, 52oe0lem 8121 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  cun 3879  cin 3880  c0 4243   cint 4838  cmpt 5110  Oncon0 6159  cfv 6324  (class class class)co 7135  reccrdg 8028  1oc1o 8078   ·o comu 8083  o coe 8084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oexp 8091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator