MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Visualization version   GIF version

Theorem oev2 8474
Description: Alternate value of ordinal exponentiation. Compare oev 8465. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 7371 . . . . . 6 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8471 . . . . . 6 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2787 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = 1o)
4 fveq2 6847 . . . . . . . 8 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
5 1oex 8427 . . . . . . . . 9 1o ∈ V
65rdg0 8372 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
74, 6eqtrdi 2787 . . . . . . 7 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = 1o)
8 inteq 4915 . . . . . . . 8 (𝐵 = ∅ → 𝐵 = ∅)
9 int0 4928 . . . . . . . 8 ∅ = V
108, 9eqtrdi 2787 . . . . . . 7 (𝐵 = ∅ → 𝐵 = V)
117, 10ineq12d 4178 . . . . . 6 (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = (1o ∩ V))
12 inv1 4359 . . . . . . 7 (1o ∩ V) = 1o
1312a1i 11 . . . . . 6 (𝐴 = ∅ → (1o ∩ V) = 1o)
1411, 13sylan9eqr 2793 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = 1o)
153, 14eqtr4d 2774 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
16 oveq1 7369 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
17 oe0m1 8472 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1817biimpa 477 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
1916, 18sylan9eqr 2793 . . . . . 6 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019an32s 650 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ∅)
21 int0el 4945 . . . . . . . 8 (∅ ∈ 𝐵 𝐵 = ∅)
2221ineq2d 4177 . . . . . . 7 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅))
23 in0 4356 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅) = ∅
2422, 23eqtrdi 2787 . . . . . 6 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2524adantl 482 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2620, 25eqtr4d 2774 . . . 4 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
2715, 26oe0lem 8464 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
28 inteq 4915 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = ∅)
2928, 9eqtrdi 2787 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = V)
3029difeq2d 4087 . . . . . . . 8 (𝐴 = ∅ → (V ∖ 𝐴) = (V ∖ V))
31 difid 4335 . . . . . . . 8 (V ∖ V) = ∅
3230, 31eqtrdi 2787 . . . . . . 7 (𝐴 = ∅ → (V ∖ 𝐴) = ∅)
3332uneq2d 4128 . . . . . 6 (𝐴 = ∅ → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ ∅))
34 uncom 4118 . . . . . 6 ( 𝐵 ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ 𝐵)
35 un0 4355 . . . . . 6 ( 𝐵 ∪ ∅) = 𝐵
3633, 34, 353eqtr3g 2794 . . . . 5 (𝐴 = ∅ → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3736adantl 482 . . . 4 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3837ineq2d 4177 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
3927, 38eqtr4d 2774 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
40 oevn0 8466 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
41 int0el 4945 . . . . . . . . . 10 (∅ ∈ 𝐴 𝐴 = ∅)
4241difeq2d 4087 . . . . . . . . 9 (∅ ∈ 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
43 dif0 4337 . . . . . . . . 9 (V ∖ ∅) = V
4442, 43eqtrdi 2787 . . . . . . . 8 (∅ ∈ 𝐴 → (V ∖ 𝐴) = V)
4544uneq2d 4128 . . . . . . 7 (∅ ∈ 𝐴 → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ V))
46 unv 4360 . . . . . . 7 ( 𝐵 ∪ V) = V
4745, 34, 463eqtr3g 2794 . . . . . 6 (∅ ∈ 𝐴 → ((V ∖ 𝐴) ∪ 𝐵) = V)
4847adantl 482 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((V ∖ 𝐴) ∪ 𝐵) = V)
4948ineq2d 4177 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V))
50 inv1 4359 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)
5149, 50eqtr2di 2788 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5240, 51eqtrd 2771 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5339, 52oe0lem 8464 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3446  cdif 3910  cun 3911  cin 3912  c0 4287   cint 4912  cmpt 5193  Oncon0 6322  cfv 6501  (class class class)co 7362  reccrdg 8360  1oc1o 8410   ·o comu 8415  o coe 8416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oexp 8423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator