MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Visualization version   GIF version

Theorem oev2 8533
Description: Alternate value of ordinal exponentiation. Compare oev 8524. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 7412 . . . . . 6 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8530 . . . . . 6 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2786 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = 1o)
4 fveq2 6875 . . . . . . . 8 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
5 1oex 8488 . . . . . . . . 9 1o ∈ V
65rdg0 8433 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
74, 6eqtrdi 2786 . . . . . . 7 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = 1o)
8 inteq 4925 . . . . . . . 8 (𝐵 = ∅ → 𝐵 = ∅)
9 int0 4938 . . . . . . . 8 ∅ = V
108, 9eqtrdi 2786 . . . . . . 7 (𝐵 = ∅ → 𝐵 = V)
117, 10ineq12d 4196 . . . . . 6 (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = (1o ∩ V))
12 inv1 4373 . . . . . . 7 (1o ∩ V) = 1o
1312a1i 11 . . . . . 6 (𝐴 = ∅ → (1o ∩ V) = 1o)
1411, 13sylan9eqr 2792 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = 1o)
153, 14eqtr4d 2773 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
16 oveq1 7410 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
17 oe0m1 8531 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1817biimpa 476 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
1916, 18sylan9eqr 2792 . . . . . 6 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019an32s 652 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ∅)
21 int0el 4955 . . . . . . . 8 (∅ ∈ 𝐵 𝐵 = ∅)
2221ineq2d 4195 . . . . . . 7 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅))
23 in0 4370 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ∅) = ∅
2422, 23eqtrdi 2786 . . . . . 6 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2524adantl 481 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵) = ∅)
2620, 25eqtr4d 2773 . . . 4 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
2715, 26oe0lem 8523 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
28 inteq 4925 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = ∅)
2928, 9eqtrdi 2786 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = V)
3029difeq2d 4101 . . . . . . . 8 (𝐴 = ∅ → (V ∖ 𝐴) = (V ∖ V))
31 difid 4351 . . . . . . . 8 (V ∖ V) = ∅
3230, 31eqtrdi 2786 . . . . . . 7 (𝐴 = ∅ → (V ∖ 𝐴) = ∅)
3332uneq2d 4143 . . . . . 6 (𝐴 = ∅ → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ ∅))
34 uncom 4133 . . . . . 6 ( 𝐵 ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ 𝐵)
35 un0 4369 . . . . . 6 ( 𝐵 ∪ ∅) = 𝐵
3633, 34, 353eqtr3g 2793 . . . . 5 (𝐴 = ∅ → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3736adantl 481 . . . 4 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3837ineq2d 4195 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ 𝐵))
3927, 38eqtr4d 2773 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
40 oevn0 8525 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵))
41 int0el 4955 . . . . . . . . . 10 (∅ ∈ 𝐴 𝐴 = ∅)
4241difeq2d 4101 . . . . . . . . 9 (∅ ∈ 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
43 dif0 4353 . . . . . . . . 9 (V ∖ ∅) = V
4442, 43eqtrdi 2786 . . . . . . . 8 (∅ ∈ 𝐴 → (V ∖ 𝐴) = V)
4544uneq2d 4143 . . . . . . 7 (∅ ∈ 𝐴 → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ V))
46 unv 4374 . . . . . . 7 ( 𝐵 ∪ V) = V
4745, 34, 463eqtr3g 2793 . . . . . 6 (∅ ∈ 𝐴 → ((V ∖ 𝐴) ∪ 𝐵) = V)
4847adantl 481 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((V ∖ 𝐴) ∪ 𝐵) = V)
4948ineq2d 4195 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V))
50 inv1 4373 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ V) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵)
5149, 50eqtr2di 2787 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5240, 51eqtrd 2770 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5339, 52oe0lem 8523 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  cun 3924  cin 3925  c0 4308   cint 4922  cmpt 5201  Oncon0 6352  cfv 6530  (class class class)co 7403  reccrdg 8421  1oc1o 8471   ·o comu 8476  o coe 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oexp 8484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator