| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vsn | Structured version Visualization version GIF version | ||
| Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| vsn | ⊢ {V} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 5251 | . 2 ⊢ ¬ V ∈ V | |
| 2 | snprc 4667 | . 2 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ {V} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: mo0 48853 setc1oterm 49531 |
| Copyright terms: Public domain | W3C validator |