Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vsn Structured version   Visualization version   GIF version

Theorem vsn 48543
Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
vsn {V} = ∅

Proof of Theorem vsn
StepHypRef Expression
1 vprc 5333 . 2 ¬ V ∈ V
2 snprc 4742 . 2 (¬ V ∈ V ↔ {V} = ∅)
31, 2mpbi 230 1 {V} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-nul 4353  df-sn 4649
This theorem is referenced by:  mo0  48545
  Copyright terms: Public domain W3C validator