Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vsn Structured version   Visualization version   GIF version

Theorem vsn 48757
Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
vsn {V} = ∅

Proof of Theorem vsn
StepHypRef Expression
1 vprc 5290 . 2 ¬ V ∈ V
2 snprc 4698 . 2 (¬ V ∈ V ↔ {V} = ∅)
31, 2mpbi 230 1 {V} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-nul 4314  df-sn 4607
This theorem is referenced by:  mo0  48759  setc1oterm  49343
  Copyright terms: Public domain W3C validator