Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vsn | Structured version Visualization version GIF version |
Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
vsn | ⊢ {V} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5234 | . 2 ⊢ ¬ V ∈ V | |
2 | snprc 4650 | . 2 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ {V} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: mo0 46047 |
Copyright terms: Public domain | W3C validator |