| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vsn | Structured version Visualization version GIF version | ||
| Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| vsn | ⊢ {V} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 5270 | . 2 ⊢ ¬ V ∈ V | |
| 2 | snprc 4681 | . 2 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ {V} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: mo0 48799 setc1oterm 49477 |
| Copyright terms: Public domain | W3C validator |