|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vsn | Structured version Visualization version GIF version | ||
| Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| vsn | ⊢ {V} = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vprc 5314 | . 2 ⊢ ¬ V ∈ V | |
| 2 | snprc 4716 | . 2 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ {V} = ∅ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 {csn 4625 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3953 df-nul 4333 df-sn 4626 | 
| This theorem is referenced by: mo0 48738 setc1oterm 49162 | 
| Copyright terms: Public domain | W3C validator |