![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vsn | Structured version Visualization version GIF version |
Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
vsn | ⊢ {V} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5316 | . 2 ⊢ ¬ V ∈ V | |
2 | snprc 4722 | . 2 ⊢ (¬ V ∈ V ↔ {V} = ∅) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ {V} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-nul 4324 df-sn 4630 |
This theorem is referenced by: mo0 47498 |
Copyright terms: Public domain | W3C validator |