| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mo0 | Structured version Visualization version GIF version | ||
| Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mo0 | ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsn 48773 | . . . 4 ⊢ {V} = ∅ | |
| 2 | 1 | eqcomi 2738 | . . 3 ⊢ ∅ = {V} |
| 3 | eqeq1 2733 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V})) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 = {V}) |
| 5 | mosn 48774 | . 2 ⊢ (𝐴 = {V} → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 Vcvv 3444 ∅c0 4292 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-v 3446 df-sbc 3751 df-dif 3914 df-nul 4293 df-sn 4586 |
| This theorem is referenced by: mosssn 48776 mo0sn 48777 f1omo 48854 f1omoOLD 48855 discthing 49423 |
| Copyright terms: Public domain | W3C validator |