Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo0 Structured version   Visualization version   GIF version

Theorem mo0 48792
Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mo0 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mo0
StepHypRef Expression
1 vsn 48790 . . . 4 {V} = ∅
21eqcomi 2739 . . 3 ∅ = {V}
3 eqeq1 2734 . . 3 (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V}))
42, 3mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 = {V})
5 mosn 48791 . 2 (𝐴 = {V} → ∃*𝑥 𝑥𝐴)
64, 5syl 17 1 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃*wmo 2532  Vcvv 3450  c0 4298  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-v 3452  df-sbc 3756  df-dif 3919  df-nul 4299  df-sn 4592
This theorem is referenced by:  mosssn  48793  mo0sn  48794  f1omo  48869  f1omoOLD  48870  discthing  49430
  Copyright terms: Public domain W3C validator