| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mo0 | Structured version Visualization version GIF version | ||
| Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mo0 | ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsn 48790 | . . . 4 ⊢ {V} = ∅ | |
| 2 | 1 | eqcomi 2739 | . . 3 ⊢ ∅ = {V} |
| 3 | eqeq1 2734 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V})) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 = {V}) |
| 5 | mosn 48791 | . 2 ⊢ (𝐴 = {V} → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃*wmo 2532 Vcvv 3450 ∅c0 4298 {csn 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-v 3452 df-sbc 3756 df-dif 3919 df-nul 4299 df-sn 4592 |
| This theorem is referenced by: mosssn 48793 mo0sn 48794 f1omo 48869 f1omoOLD 48870 discthing 49430 |
| Copyright terms: Public domain | W3C validator |