| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mo0 | Structured version Visualization version GIF version | ||
| Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mo0 | ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsn 48843 | . . . 4 ⊢ {V} = ∅ | |
| 2 | 1 | eqcomi 2740 | . . 3 ⊢ ∅ = {V} |
| 3 | eqeq1 2735 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V})) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 = {V}) |
| 5 | mosn 48844 | . 2 ⊢ (𝐴 = {V} → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 Vcvv 3436 ∅c0 4278 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-v 3438 df-sbc 3737 df-dif 3900 df-nul 4279 df-sn 4572 |
| This theorem is referenced by: mosssn 48846 mo0sn 48847 f1omo 48924 f1omoOLD 48925 discthing 49493 |
| Copyright terms: Public domain | W3C validator |