![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mo0 | Structured version Visualization version GIF version |
Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mo0 | ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsn 47708 | . . . 4 ⊢ {V} = ∅ | |
2 | 1 | eqcomi 2733 | . . 3 ⊢ ∅ = {V} |
3 | eqeq1 2728 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V})) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 = {V}) |
5 | mosn 47709 | . 2 ⊢ (𝐴 = {V} → ∃*𝑥 𝑥 ∈ 𝐴) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∃*wmo 2524 Vcvv 3466 ∅c0 4315 {csn 4621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-v 3468 df-sbc 3771 df-dif 3944 df-nul 4316 df-sn 4622 |
This theorem is referenced by: mosssn 47711 mo0sn 47712 f1omo 47739 |
Copyright terms: Public domain | W3C validator |