Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo0 Structured version   Visualization version   GIF version

Theorem mo0 47686
Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mo0 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mo0
StepHypRef Expression
1 vsn 47684 . . . 4 {V} = ∅
21eqcomi 2733 . . 3 ∅ = {V}
3 eqeq1 2728 . . 3 (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V}))
42, 3mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 = {V})
5 mosn 47685 . 2 (𝐴 = {V} → ∃*𝑥 𝑥𝐴)
64, 5syl 17 1 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ∃*wmo 2524  Vcvv 3466  c0 4314  {csn 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-v 3468  df-sbc 3770  df-dif 3943  df-nul 4315  df-sn 4621
This theorem is referenced by:  mosssn  47687  mo0sn  47688  f1omo  47715
  Copyright terms: Public domain W3C validator