Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo0 Structured version   Visualization version   GIF version

Theorem mo0 48845
Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mo0 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mo0
StepHypRef Expression
1 vsn 48843 . . . 4 {V} = ∅
21eqcomi 2740 . . 3 ∅ = {V}
3 eqeq1 2735 . . 3 (𝐴 = ∅ → (𝐴 = {V} ↔ ∅ = {V}))
42, 3mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 = {V})
5 mosn 48844 . 2 (𝐴 = {V} → ∃*𝑥 𝑥𝐴)
64, 5syl 17 1 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ∃*wmo 2533  Vcvv 3436  c0 4278  {csn 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-v 3438  df-sbc 3737  df-dif 3900  df-nul 4279  df-sn 4572
This theorem is referenced by:  mosssn  48846  mo0sn  48847  f1omo  48924  f1omoOLD  48925  discthing  49493
  Copyright terms: Public domain W3C validator