![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4664 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1846 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | neq0 4375 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
4 | isset 3502 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: snnzb 4743 rmosn 4744 rabsnif 4748 prprc1 4790 prprc 4792 preqsnd 4883 unisn2 5330 eqsnuniex 5379 snexALT 5401 snex 5451 posn 5785 frsn 5787 relsnb 5826 relimasn 6114 elimasni 6121 inisegn0 6128 dmsnsnsn 6251 predprc 6370 sucprc 6471 dffv3 6916 fconst5 7243 ordsuci 7844 1stval 8032 2ndval 8033 ecexr 8768 snfi 9109 snfiOLD 9110 domunsn 9193 snnen2oOLD 9290 hashrabrsn 14421 hashrabsn01 14422 hashrabsn1 14423 elprchashprn2 14445 hashsn01 14465 hash2pwpr 14525 snsymgefmndeq 19436 efgrelexlema 19791 usgr1v 29291 1conngr 30226 frgr1v 30303 n0lplig 30515 unidifsnne 32564 eldm3 35723 opelco3 35738 fvsingle 35884 unisnif 35889 funpartlem 35906 bj-sngltag 36949 bj-snex 37001 bj-restsnid 37053 bj-snmooreb 37080 wopprc 42987 safesnsupfidom1o 43379 sn1dom 43488 uneqsn 43987 vsn 48543 mofsn2 48558 |
Copyright terms: Public domain | W3C validator |