| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4608 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | neq0 4318 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
| 4 | isset 3464 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
| 6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-nul 4300 df-sn 4593 |
| This theorem is referenced by: snnzb 4685 rmosn 4686 rabsnif 4690 prprc1 4732 prprc 4734 preqsnd 4826 unisn2 5270 eqsnuniex 5319 snexALT 5341 snex 5394 posn 5727 frsn 5729 relsnb 5768 relimasn 6059 elimasni 6065 inisegn0 6072 dmsnsnsn 6196 predprc 6314 sucprc 6413 dffv3 6857 fconst5 7183 ordsuci 7787 1stval 7973 2ndval 7974 ecexr 8679 snfi 9017 snfiOLD 9018 domunsn 9097 hashrabrsn 14344 hashrabsn01 14345 hashrabsn1 14346 elprchashprn2 14368 hashsn01 14388 hash2pwpr 14448 snsymgefmndeq 19332 efgrelexlema 19686 usgr1v 29190 1conngr 30130 frgr1v 30207 n0lplig 30419 unidifsnne 32472 eldm3 35755 opelco3 35769 fvsingle 35915 unisnif 35920 funpartlem 35937 bj-sngltag 36978 bj-snex 37030 bj-restsnid 37082 bj-snmooreb 37109 wopprc 43026 safesnsupfidom1o 43413 sn1dom 43522 uneqsn 44021 vsn 48804 mofsn2 48837 |
| Copyright terms: Public domain | W3C validator |