![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4643 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1850 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | neq0 4344 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
4 | isset 3487 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | 2, 3, 4 | 3bitr4i 302 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-nul 4322 df-sn 4628 |
This theorem is referenced by: snnzb 4721 rmosn 4722 rabsnif 4726 prprc1 4768 prprc 4770 preqsnd 4858 unisn2 5311 eqsnuniex 5358 snexALT 5380 snex 5430 posn 5759 frsn 5761 relsnb 5800 relimasn 6080 elimasni 6087 inisegn0 6094 dmsnsnsn 6216 predprc 6336 sucprc 6437 dffv3 6884 fconst5 7203 ordsuci 7792 1stval 7973 2ndval 7974 ecexr 8704 snfi 9040 domunsn 9123 snnen2oOLD 9223 hashrabrsn 14328 hashrabsn01 14329 hashrabsn1 14330 elprchashprn2 14352 hashsn01 14372 hash2pwpr 14433 snsymgefmndeq 19256 efgrelexlema 19611 usgr1v 28502 1conngr 29436 frgr1v 29513 n0lplig 29723 unidifsnne 31760 eldm3 34719 opelco3 34734 fvsingle 34880 unisnif 34885 funpartlem 34902 bj-sngltag 35852 bj-snex 35904 bj-restsnid 35956 bj-snmooreb 35983 wopprc 41754 safesnsupfidom1o 42153 sn1dom 42262 uneqsn 42761 vsn 47449 mofsn2 47464 |
Copyright terms: Public domain | W3C validator |