Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4574 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | neq0 4276 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
4 | isset 3435 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | 2, 3, 4 | 3bitr4i 302 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: snnzb 4651 rmosn 4652 rabsnif 4656 prprc1 4698 prprc 4700 preqsnd 4786 unisn2 5231 eqsnuniex 5278 snexALT 5301 snex 5349 posn 5663 frsn 5665 relsnb 5701 relimasn 5981 elimasni 5988 inisegn0 5995 dmsnsnsn 6112 sucprc 6326 dffv3 6752 fconst5 7063 1stval 7806 2ndval 7807 ecexr 8461 snfi 8788 domunsn 8863 snnen2o 8903 hashrabrsn 14015 hashrabsn01 14016 hashrabsn1 14017 elprchashprn2 14039 hashsn01 14059 hash2pwpr 14118 snsymgefmndeq 18917 efgrelexlema 19270 usgr1v 27526 1conngr 28459 frgr1v 28536 n0lplig 28746 unidifsnne 30785 eldm3 33634 opelco3 33655 fvsingle 34149 unisnif 34154 funpartlem 34171 bj-sngltag 35100 bj-restsnid 35185 bj-snmooreb 35212 wopprc 40768 sn1dom 41031 uneqsn 41522 vsn 46045 mofsn2 46060 |
Copyright terms: Public domain | W3C validator |