| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4595 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | neq0 4305 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
| 4 | isset 3452 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
| 6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-nul 4287 df-sn 4580 |
| This theorem is referenced by: snnzb 4672 rmosn 4673 rabsnif 4677 prprc1 4719 prprc 4721 preqsnd 4813 unisn2 5254 eqsnuniex 5303 snexALT 5325 snex 5378 posn 5709 frsn 5711 relsnb 5749 relimasn 6040 elimasni 6046 inisegn0 6053 dmsnsnsn 6173 predprc 6290 sucprc 6389 dffv3 6822 fconst5 7146 ordsuci 7748 1stval 7933 2ndval 7934 ecexr 8637 snfi 8975 snfiOLD 8976 domunsn 9051 hashrabrsn 14297 hashrabsn01 14298 hashrabsn1 14299 elprchashprn2 14321 hashsn01 14341 hash2pwpr 14401 snsymgefmndeq 19292 efgrelexlema 19646 usgr1v 29219 1conngr 30156 frgr1v 30233 n0lplig 30445 unidifsnne 32498 eldm3 35736 opelco3 35750 fvsingle 35896 unisnif 35901 funpartlem 35918 bj-sngltag 36959 bj-snex 37011 bj-restsnid 37063 bj-snmooreb 37090 wopprc 43006 safesnsupfidom1o 43393 sn1dom 43502 uneqsn 44001 vsn 48800 mofsn2 48833 |
| Copyright terms: Public domain | W3C validator |