| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4593 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 2 | 1 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | neq0 4301 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
| 4 | isset 3451 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
| 6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-nul 4283 df-sn 4578 |
| This theorem is referenced by: snnzb 4672 rmosn 4673 rabsnif 4677 prprc1 4719 prprc 4721 preqsnd 4812 unisn2 5254 eqsnuniex 5303 snexALT 5325 snex 5378 posn 5707 frsn 5709 relsnb 5748 relimasn 6041 elimasni 6047 inisegn0 6054 dmsnsnsn 6175 predprc 6293 sucprc 6392 dffv3 6827 fconst5 7149 ordsuci 7750 1stval 7932 2ndval 7933 ecexr 8636 snfi 8976 domunsn 9051 hashrabrsn 14286 hashrabsn01 14287 hashrabsn1 14288 elprchashprn2 14310 hashsn01 14330 hash2pwpr 14390 snsymgefmndeq 19315 efgrelexlema 19669 usgr1v 29255 1conngr 30195 frgr1v 30272 n0lplig 30484 unidifsnne 32537 eldm3 35877 opelco3 35891 fvsingle 36034 unisnif 36039 funpartlem 36058 bj-sngltag 37100 bj-snex 37152 bj-restsnid 37204 bj-snmooreb 37231 wopprc 43187 safesnsupfidom1o 43574 sn1dom 43683 uneqsn 44182 vsn 48973 mofsn2 49006 |
| Copyright terms: Public domain | W3C validator |