| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4605 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | neq0 4315 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
| 4 | isset 3461 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
| 6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: snnzb 4682 rmosn 4683 rabsnif 4687 prprc1 4729 prprc 4731 preqsnd 4823 unisn2 5267 eqsnuniex 5316 snexALT 5338 snex 5391 posn 5724 frsn 5726 relsnb 5765 relimasn 6056 elimasni 6062 inisegn0 6069 dmsnsnsn 6193 predprc 6311 sucprc 6410 dffv3 6854 fconst5 7180 ordsuci 7784 1stval 7970 2ndval 7971 ecexr 8676 snfi 9014 snfiOLD 9015 domunsn 9091 hashrabrsn 14337 hashrabsn01 14338 hashrabsn1 14339 elprchashprn2 14361 hashsn01 14381 hash2pwpr 14441 snsymgefmndeq 19325 efgrelexlema 19679 usgr1v 29183 1conngr 30123 frgr1v 30200 n0lplig 30412 unidifsnne 32465 eldm3 35748 opelco3 35762 fvsingle 35908 unisnif 35913 funpartlem 35930 bj-sngltag 36971 bj-snex 37023 bj-restsnid 37075 bj-snmooreb 37102 wopprc 43019 safesnsupfidom1o 43406 sn1dom 43515 uneqsn 44014 vsn 48800 mofsn2 48833 |
| Copyright terms: Public domain | W3C validator |