| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4592 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 2 | 1 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | neq0 4302 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
| 4 | isset 3450 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
| 6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-nul 4284 df-sn 4577 |
| This theorem is referenced by: snnzb 4671 rmosn 4672 rabsnif 4676 prprc1 4718 prprc 4720 preqsnd 4811 unisn2 5250 eqsnuniex 5299 snexALT 5321 snex 5374 posn 5702 frsn 5704 relsnb 5742 relimasn 6034 elimasni 6040 inisegn0 6047 dmsnsnsn 6167 predprc 6285 sucprc 6384 dffv3 6818 fconst5 7140 ordsuci 7741 1stval 7923 2ndval 7924 ecexr 8627 snfi 8965 domunsn 9040 hashrabrsn 14279 hashrabsn01 14280 hashrabsn1 14281 elprchashprn2 14303 hashsn01 14323 hash2pwpr 14383 snsymgefmndeq 19308 efgrelexlema 19662 usgr1v 29235 1conngr 30172 frgr1v 30249 n0lplig 30461 unidifsnne 32514 eldm3 35803 opelco3 35817 fvsingle 35960 unisnif 35965 funpartlem 35982 bj-sngltag 37023 bj-snex 37075 bj-restsnid 37127 bj-snmooreb 37154 wopprc 43069 safesnsupfidom1o 43456 sn1dom 43565 uneqsn 44064 vsn 48849 mofsn2 48882 |
| Copyright terms: Public domain | W3C validator |