![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4645 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | neq0 4346 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
4 | isset 3488 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
6 | 5 | con1bii 357 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-nul 4324 df-sn 4630 |
This theorem is referenced by: snnzb 4723 rmosn 4724 rabsnif 4728 prprc1 4770 prprc 4772 preqsnd 4860 unisn2 5313 eqsnuniex 5360 snexALT 5382 snex 5432 posn 5762 frsn 5764 relsnb 5803 relimasn 6084 elimasni 6091 inisegn0 6098 dmsnsnsn 6220 predprc 6340 sucprc 6441 dffv3 6888 fconst5 7207 ordsuci 7796 1stval 7977 2ndval 7978 ecexr 8708 snfi 9044 domunsn 9127 snnen2oOLD 9227 hashrabrsn 14332 hashrabsn01 14333 hashrabsn1 14334 elprchashprn2 14356 hashsn01 14376 hash2pwpr 14437 snsymgefmndeq 19262 efgrelexlema 19617 usgr1v 28513 1conngr 29447 frgr1v 29524 n0lplig 29736 unidifsnne 31773 eldm3 34731 opelco3 34746 fvsingle 34892 unisnif 34897 funpartlem 34914 bj-sngltag 35864 bj-snex 35916 bj-restsnid 35968 bj-snmooreb 35995 wopprc 41769 safesnsupfidom1o 42168 sn1dom 42277 uneqsn 42776 vsn 47496 mofsn2 47511 |
Copyright terms: Public domain | W3C validator |