| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4617 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
| 3 | neq0 4327 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
| 4 | isset 3473 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
| 6 | 5 | con1bii 356 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-nul 4309 df-sn 4602 |
| This theorem is referenced by: snnzb 4694 rmosn 4695 rabsnif 4699 prprc1 4741 prprc 4743 preqsnd 4835 unisn2 5282 eqsnuniex 5331 snexALT 5353 snex 5406 posn 5740 frsn 5742 relsnb 5781 relimasn 6072 elimasni 6078 inisegn0 6085 dmsnsnsn 6209 predprc 6327 sucprc 6429 dffv3 6871 fconst5 7197 ordsuci 7800 1stval 7988 2ndval 7989 ecexr 8722 snfi 9055 snfiOLD 9056 domunsn 9139 snnen2oOLD 9234 hashrabrsn 14388 hashrabsn01 14389 hashrabsn1 14390 elprchashprn2 14412 hashsn01 14432 hash2pwpr 14492 snsymgefmndeq 19374 efgrelexlema 19728 usgr1v 29181 1conngr 30121 frgr1v 30198 n0lplig 30410 unidifsnne 32463 eldm3 35724 opelco3 35738 fvsingle 35884 unisnif 35889 funpartlem 35906 bj-sngltag 36947 bj-snex 36999 bj-restsnid 37051 bj-snmooreb 37078 wopprc 43001 safesnsupfidom1o 43388 sn1dom 43497 uneqsn 43996 vsn 48738 mofsn2 48771 |
| Copyright terms: Public domain | W3C validator |