Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4538 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1849 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | neq0 4244 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
4 | isset 3422 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | 2, 3, 4 | 3bitr4i 306 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
6 | 5 | con1bii 360 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 Vcvv 3409 ∅c0 4225 {csn 4522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3861 df-nul 4226 df-sn 4523 |
This theorem is referenced by: snnzb 4611 rmosn 4612 rabsnif 4616 prprc1 4658 prprc 4660 preqsnd 4746 unisn2 5182 snexALT 5252 snex 5300 posn 5606 frsn 5608 relsnb 5644 relimasn 5924 elimasni 5928 inisegn0 5933 dmsnsnsn 6049 sucprc 6244 dffv3 6654 fconst5 6959 1stval 7695 2ndval 7696 ecexr 8304 snfi 8614 domunsn 8689 snnen2o 8729 hashrabrsn 13783 hashrabsn01 13784 hashrabsn1 13785 elprchashprn2 13807 hashsn01 13827 hash2pwpr 13886 snsymgefmndeq 18590 efgrelexlema 18942 usgr1v 27145 1conngr 28078 frgr1v 28155 n0lplig 28365 unidifsnne 30406 eldm3 33244 opelco3 33265 fvsingle 33771 unisnif 33776 funpartlem 33793 bj-sngltag 34700 bj-restsnid 34782 bj-snmooreb 34809 wopprc 40344 sn1dom 40607 uneqsn 41099 |
Copyright terms: Public domain | W3C validator |