Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snprc | Structured version Visualization version GIF version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snprc | ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4577 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | exbii 1850 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴) |
3 | neq0 4279 | . . 3 ⊢ (¬ {𝐴} = ∅ ↔ ∃𝑥 𝑥 ∈ {𝐴}) | |
4 | isset 3445 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (¬ {𝐴} = ∅ ↔ 𝐴 ∈ V) |
6 | 5 | con1bii 357 | 1 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-nul 4257 df-sn 4562 |
This theorem is referenced by: snnzb 4654 rmosn 4655 rabsnif 4659 prprc1 4701 prprc 4703 preqsnd 4789 unisn2 5236 eqsnuniex 5283 snexALT 5306 snex 5354 posn 5672 frsn 5674 relsnb 5712 relimasn 5992 elimasni 5999 inisegn0 6006 dmsnsnsn 6123 predprc 6241 sucprc 6341 dffv3 6770 fconst5 7081 1stval 7833 2ndval 7834 ecexr 8503 snfi 8834 domunsn 8914 snnen2oOLD 9010 hashrabrsn 14087 hashrabsn01 14088 hashrabsn1 14089 elprchashprn2 14111 hashsn01 14131 hash2pwpr 14190 snsymgefmndeq 19002 efgrelexlema 19355 usgr1v 27623 1conngr 28558 frgr1v 28635 n0lplig 28845 unidifsnne 30884 eldm3 33728 opelco3 33749 fvsingle 34222 unisnif 34227 funpartlem 34244 bj-sngltag 35173 bj-restsnid 35258 bj-snmooreb 35285 wopprc 40852 sn1dom 41133 uneqsn 41633 vsn 46157 mofsn2 46172 |
Copyright terms: Public domain | W3C validator |